
1

See the light - agile, industrial strength, rapid web application development made easy

The Grails Framework - Reference Documentation
Authors: Graeme Rocher, Peter Ledbrook, Marc Palmer, Jeff Brown, Luke Daley, Burt Beckwith, Lari Hotari

Version: 3.1.10

Table of Contents

1 Introduction

1.1 What's new in Grails 3.1?

1.1.1 Improvements to Grails 3 Profiles

1.1.2 REST API and AngularJS Profiles

1.1.3 GORM 5 Suite

1.1.4 Plugin Publishing Plugins

1.2 What's new in Grails 3.0?

1.2.1 Core Features

1.2.2 Web Features

1.2.3 Development Environment Features

1.2.4 Testing Features

2 Getting Started

2.1 Installation Requirements

2.2 Downloading and Installing

2.3 Creating an Application

2.4 A Hello World Example

2.5 Using Interactive Mode

2.6 Getting Set Up in an IDE

2.7 Convention over Configuration

2.8 Running and Debugging an Application

2.9 Testing an Application

2.10 Deploying an Application

2.11 Supported Java EE Containers

2.12 Creating Artefacts

2.13 Generating an Application

3 Upgrading from previous versions of Grails

http://grails.org

2

3.1 Upgrading from Grails 3.0

3.2 Upgrading from Grails 2.x

3.2.1 Upgrading Plugins

3.2.2 Upgrading Applications

4 Configuration

4.1 Basic Configuration

4.1.1 Options for the yml format Config

4.1.2 Built in options

4.1.3 Logging

4.1.4 GORM

4.2 The Application Class

4.2.1 Executing the Application Class

4.2.2 Customizing the Application Class

4.2.3 The Application LifeCycle

4.3 Environments

4.4 The DataSource

4.4.1 DataSources and Environments

4.4.2 Automatic Database Migration

4.4.3 Transaction-aware DataSource Proxy

4.4.4 Database Console

4.4.5 Multiple Datasources

4.5 Versioning

4.6 Project Documentation

4.7 Dependency Resolution

5 The Command Line

5.1 Interactive Mode

5.2 Creating Custom Scripts

5.3 Re-using Grails scripts

5.4 Building with Gradle

5.4.1 Defining Dependencies with Gradle

5.4.2 Working with Gradle Tasks

5.4.3 Grails plugins for Gradle

6 Application Profiles

6.1 Creating Profiles

6.2 Profile Inheritance

6.3 Publishing Profiles

6.4 Understanding Profiles

3

6.5 Creating Profile Commands

6.6 Creating Profile Features

7 Object Relational Mapping (GORM)

7.1 Quick Start Guide

7.1.1 Basic CRUD

7.2 Domain Modelling in GORM

7.2.1 Association in GORM

7.2.1.1 Many-to-one and one-to-one

7.2.1.2 One-to-many

7.2.1.3 Many-to-many

7.2.1.4 Basic Collection Types

7.2.2 Composition in GORM

7.2.3 Inheritance in GORM

7.2.4 Sets, Lists and Maps

7.3 Persistence Basics

7.3.1 Saving and Updating

7.3.2 Deleting Objects

7.3.3 Understanding Cascading Updates and Deletes

7.3.4 Eager and Lazy Fetching

7.3.5 Pessimistic and Optimistic Locking

7.3.6 Modification Checking

7.4 Querying with GORM

7.4.1 Dynamic Finders

7.4.2 Where Queries

7.4.3 Criteria

7.4.4 Detached Criteria

7.4.5 Hibernate Query Language (HQL)

7.5 Advanced GORM Features

7.5.1 Events and Auto Timestamping

7.5.2 Custom ORM Mapping

7.5.2.1 Table and Column Names

7.5.2.2 Caching Strategy

7.5.2.3 Inheritance Strategies

7.5.2.4 Custom Database Identity

7.5.2.5 Composite Primary Keys

7.5.2.6 Database Indices

7.5.2.7 Optimistic Locking and Versioning

4

7.5.2.8 Eager and Lazy Fetching

7.5.2.9 Custom Cascade Behaviour

7.5.2.10 Custom Hibernate Types

7.5.2.11 Derived Properties

7.5.2.12 Custom Naming Strategy

7.5.3 Default Sort Order

7.6 Programmatic Transactions

7.7 GORM and Constraints

8 The Web Layer

8.1 Controllers

8.1.1 Understanding Controllers and Actions

8.1.2 Controllers and Scopes

8.1.3 Models and Views

8.1.4 Redirects and Chaining

8.1.5 Data Binding

8.1.6 XML and JSON Responses

8.1.7 More on JSONBuilder

8.1.8 Uploading Files

8.1.9 Command Objects

8.1.10 Handling Duplicate Form Submissions

8.1.11 Simple Type Converters

8.1.12 Declarative Controller Exception Handling

8.2 Groovy Server Pages

8.2.1 GSP Basics

8.2.1.1 Variables and Scopes

8.2.1.2 Logic and Iteration

8.2.1.3 Page Directives

8.2.1.4 Expressions

8.2.2 GSP Tags

8.2.2.1 Variables and Scopes

8.2.2.2 Logic and Iteration

8.2.2.3 Search and Filtering

8.2.2.4 Links and Resources

8.2.2.5 Forms and Fields

8.2.2.6 Tags as Method Calls

8.2.3 Views and Templates

8.2.4 Layouts with Sitemesh

5

8.2.5 Static Resources

8.2.6 Sitemesh Content Blocks

8.2.7 Making Changes to a Deployed Application

8.2.8 GSP Debugging

8.3 Tag Libraries

8.3.1 Variables and Scopes

8.3.2 Simple Tags

8.3.3 Logical Tags

8.3.4 Iterative Tags

8.3.5 Tag Namespaces

8.3.6 Using JSP Tag Libraries

8.3.7 Tag return value

8.4 URL Mappings

8.4.1 Mapping to Controllers and Actions

8.4.2 Mapping to REST resources

8.4.3 Redirects In URL Mappings

8.4.4 Embedded Variables

8.4.5 Mapping to Views

8.4.6 Mapping to Response Codes

8.4.7 Mapping to HTTP methods

8.4.8 Mapping Wildcards

8.4.9 Automatic Link Re-Writing

8.4.10 Applying Constraints

8.4.11 Named URL Mappings

8.4.12 Customizing URL Formats

8.4.13 Namespaced Controllers

8.5 Interceptors

8.5.1 Defining Interceptors

8.5.2 Matching Requests with Inteceptors

8.5.3 Ordering Interceptor Execution

8.6 Content Negotiation

9 Traits

9.1 Traits Provided by Grails

9.1.1 WebAttributes Trait Example

10 Web Services

10.1 REST

10.1.1 Domain classes as REST resources

6

10.1.2 Mapping to REST resources

10.1.3 Linking to REST resources from GSP pages

10.1.4 Versioning REST resources

10.1.5 Implementing REST controllers

10.1.5.1 Extending the RestfulController super class

10.1.5.2 Implementing REST Controllers Step by Step

10.1.5.3 Generating a REST controller using scaffolding

10.1.6 The REST Profile

10.1.7 The Angular Profile

10.1.8 JSON Views

10.1.8.1 Getting Started

10.1.8.2 Creating JSON Views

10.1.8.3 JSON View Templates

10.1.8.4 Rendering Domain Classes with JSON Views

10.1.8.5 JSON Views by Convention

10.1.9 Customizing Response Rendering

10.1.9.1 Customizing the Default Renderers

10.1.9.2 Implementing a Custom Renderer

10.1.9.3 Using GSP to Customize Rendering

10.1.10 Hypermedia as the Engine of Application State

10.1.10.1 HAL Support

10.1.10.2 Atom Support

10.1.10.3 Vnd.Error Support

10.1.11 Customizing Binding of Resources

10.2 RSS and Atom

11 Asynchronous Programming

11.1 Promises

11.2 Events

11.2.1 Consuming Events

11.2.2 Event Notification

11.2.3 Reactor Spring Annotations

11.2.4 Events from GORM

11.2.5 Events from Spring

11.3 Asynchronous GORM

11.4 Asynchronous Request Handling

11.5 Servlet 3.0 Async

12 Validation

7

12.1 Declaring Constraints

12.2 Validating Constraints

12.3 Sharing Constraints Between Classes

12.4 Validation on the Client

12.5 Validation and Internationalization

12.6 Applying Validation to Other Classes

13 The Service Layer

13.1 Declarative Transactions

13.1.1 Transactions Rollback and the Session

13.2 Scoped Services

13.3 Dependency Injection and Services

14 Static Type Checking And Compilation

14.1 The GrailsCompileStatic Annotation

14.2 The GrailsTypeChecked Annotation

15 Testing

15.1 Unit Testing

15.1.1 Unit Testing Controllers

15.1.2 Unit Testing Tag Libraries

15.1.3 Unit Testing Domains

15.1.4 Unit Testing Filters

15.1.5 Unit Testing URL Mappings

15.1.6 Mocking Collaborators

15.1.7 Mocking Codecs

15.1.8 Unit Test Metaprogramming

15.2 Integration Testing

15.3 Functional Testing

16 Internationalization

16.1 Understanding Message Bundles

16.2 Changing Locales

16.3 Reading Messages

16.4 Scaffolding and i18n

17 Security

17.1 Securing Against Attacks

17.2 Cross Site Scripting (XSS) Prevention

17.3 Encoding and Decoding Objects

17.4 Authentication

17.5 Security Plugins

8

17.5.1 Spring Security

17.5.2 Shiro

18 Plugins

18.1 Creating and Installing Plugins

18.2 Plugin Repositories

18.3 Providing Basic Artefacts

18.4 Evaluating Conventions

18.5 Hooking into Runtime Configuration

18.6 Adding Methods at Compile Time

18.7 Adding Dynamic Methods at Runtime

18.8 Participating in Auto Reload Events

18.9 Understanding Plugin Load Order

18.10 The Artefact API

18.10.1 Asking About Available Artefacts

18.10.2 Adding Your Own Artefact Types

19 Grails and Spring

19.1 The Underpinnings of Grails

19.2 Configuring Additional Beans

19.3 Runtime Spring with the Beans DSL

19.4 The BeanBuilder DSL Explained

19.5 Property Placeholder Configuration

19.6 Property Override Configuration

20 Grails and Hibernate

20.1 Using Hibernate XML Mapping Files

20.2 Mapping with Hibernate Annotations

20.3 Adding Constraints

21 Scaffolding

22 Deployment

22.1 Standalone

22.2 Container Deployment (e.g. Tomcat)

22.3 Deployment Configuration Tasks

23 Contributing to Grails

23.1 Report Issues in Github's issue tracker

23.2 Build From Source and Run Tests

23.3 Submit Patches to Grails Core

23.4 Submit Patches to Grails Documentation

9

1 Introduction
Java web development as it stands today is dramatically more complicated than it needs to be. Most modern web frameworks in the Java space are over
complicated and don't embrace the Don't Repeat Yourself (DRY) principles.

Dynamic frameworks like Rails, Django and TurboGears helped pave the way to a more modern way of thinking about web applications. Grails builds on
these concepts and dramatically reduces the complexity of building web applications on the Java platform. What makes it different, however, is that it
does so by building on already established Java technologies like Spring and Hibernate.

Grails is a full stack framework and attempts to solve as many pieces of the web development puzzle through the core technology and its associated
plugins. Included out the box are things like:

An easy to use Object Relational Mapping (ORM) layer built on Hibernate

An expressive view technology called Groovy Server Pages (GSP)

A controller layer built on MVCSpring

An interactive command line environment and build system based on Gradle

An embedded container which is configured for on the fly reloadingTomcat

Dependency injection with the inbuilt Spring container

Support for internationalization (i18n) built on Spring's core MessageSource concept

A transactional service layer built on Spring's transaction abstraction

All of these are made easy to use through the power of the language and the extensive use of Domain Specific Languages (DSLs)Groovy

This documentation will take you through getting started with Grails and building web applications with the Grails framework.

1.1 What's new in Grails 3.1?
Grails 3.1 includes the following new features.

Spring Boot 1.3 and Spring 4.2

Grails 3.1 has been upgraded to Spring Boot 1.3 and Spring 4.2.

1.1.1 Improvements to Grails 3 Profiles

Profile Publishing and Repositories

The following improvements are available in Grails profiles:

Profiles are now published as regular JAR files to any Maven compatible repository (Artifactory, Nexus etc.).

Additional profiles can be created easily with the new command.create-profile

Profiles can now contribute to the generation of the build

Profiles can now have one or many features

For more information see the new in the user guide.section on Profiles

http://www.hibernate.org
http://www.spring.io
http://gradle.org
http://tomcat.apache.org
http://groovy-lang.org

10

1.1.2 REST API and AngularJS Profiles

REST Profile

A new profile is available designed for the creation of pure REST applications without a UI.

To create a REST application use the profile as an argument to :rest-api create-app

$ grails create-app myapp --profile= -apirest

In earlier milestones this profile was named web-api. The profile has been renamed which more appropriatelyrest-api
describes its purpose.

Then start interactive mode to see the available commands for the profile:

$ cd myapp
$ grails

If you hit TAB you will notice code generation commands specific to the profile including:

create-domain-resource - Creates a domain class annotated with the annotation)Resource

create-restful-controller - Creates a controller that extends .RestfulController

JSON and Markup Views

The REST profile includes the ability to define and the features the ability to compile these views forJSON and Markup views build.gradle
production use.

The REST profile also creates to render the action and common commands such as have been overridden to generateJSON views index generate-views
JSON views.

AngularJS Profile

An initial version of the AngularJS profile is now available, making it easier to create and integrate AngularJS with Grails 3 applications.

To create a Grails 3 AngularJS application use the profile as an argument to :angular create-app

http://grails.github.io/grails-doc/3.0.x/api/grails/rest/Resource.html
http://grails.github.io/grails-doc/3.0.x/api/grails/rest/RestfulController.html
https://github.com/grails/grails-views
https://github.com/grails/grails-views

11

$ grails create-app myapp --profile=angular

Then start interactive mode to see the available commands for the profile:

$ cd myapp
$ grails

You will notice new commands such as , etc. that help you get going creating an AngularJScreate-ng-component create-ng-controller
application.

The is also preconfigured with the necessary Gradle plugins to integrate AngularJS with Asset Pipeline. The created Angularbuild.gradle
application can be found in .grails-app/assets/javascripts

1.1.3 GORM 5 Suite
Grails 3.1 ships with which is a brand new release of GORM supporting the following technologies:GORM 5

Hibernate 3, 4 and 5 - for SQL databases GORM for Hibernate now supports the latest Hibernate 5.x release

MongoDB 3.x - GORM for MongoDB has been upgraded to the MongoDB 3.x Java driver and supports codec based persistence

Neo4j 2.3.x - GORM for Neo4j has been significantly improved and support the latest release of Neo4j

Cassandra - GORM for Cassandra supports the latest 2.0.x drivers

For more information refer to the new .GORM 5 website

1.1.4 Plugin Publishing Plugins
New Gradle plugins are available to simplify publishing of plugins and profiles.

To utilize the plugin apply the plugin (after any existing Grails plugins for Gradle):org.grails.grails-plugin-publish

apply plugin: "org.grails.grails-plugin"
apply plugin: "org.grails.grails-plugin-publish"

For a profile the plugin can be used instead:grails-profile-publish

http://grails.github.io/grails-data-mapping/5.0.x/
http://grails.github.io/grails-data-mapping/5.0.x/

12

apply plugin: "org.grails.grails-profile"
apply plugin: "org.grails.grails-profile-publish"

Then configure the plugin. For example:

grailsPublish {
 user = 'user'
 key = 'key'
 githubSlug = 'foo/bar'
 license {
 name = 'Apache-2.0'
 }
 title = "My Plugin Title"
 desc = "My Plugin Description"
 developers = [johndoe:]"John Doe"
}

The and are your Bintray credentials. With this done you can continue to use to publish your plugin. In addition, if youuser key bintrayUpload
wish to update the Grails plugin portal, you simply need to configure your credentials:grails.org

grailsPublish {
 …
 portalUser = "..."
 portalPassword = "..."
}

Then call to update the :notifyPluginPortal Grails.org Plugins website

gradle notifyPluginPortal

1.2 What's new in Grails 3.0?
This section covers the new features that are present in 3.0 and is broken down into sections covering the build system, core APIs, the web tier,
persistence enhancements and improvements in testing. Note there are many more small enhancements and improvements, these sections just cover some
of the highlights.

http://grails.org/plugins

13

1.2.1 Core Features

Groovy 2.4

Grails 3.0 comes with Groovy 2.4 which includes many new features and enhancements.

For more information on Groovy 2.4, see the for more information.release notes

Spring 4.1 and Spring Boot 1.2

Grails 3.0 comes with Spring 4.1 which includes .many new features and enhancements

In addition, Grails 3.0 is built on which provides the ability to produce runnable JAR files that can embed Tomcat, Jetty or UndertowSpring Boot 1.2
containers.

Gradle Build System

Grails 3.0 deprecates the older Gant-based build system in favour of a new build that integrates closely with the .Gradle-based Gradle plugin ecosystem

See the new section on the new for more information.Gradle build

Application Profiles

Grails 3.0 supports the notion of application profiles via a new . A profile encapsulates an application structure, set of commands,profile repository
plugins and capabilities. For example the "web" profile allows construction of web applications deployable to a Servlet container. In the future more
profiles will be developed targeting different environments.

See the new section on for more information.Profiles

Redesigned API based on Traits

The Grails API has been redesigned so that public API is correctly populated under the package whilst private / internal API that is subject tograils.
change can be found in the package. The core API has also been rewritten and based around the .org.grails. Groovy Traits

See the new documentation on Grails 3.0's for more information. core traits

1.2.2 Web Features

New Interceptors API

In previous versions of Grails, filters were used to define logic that intercepts controller action execution.

As of Grails 3.0, this API is deprecated and has been replaced by the new . An example interceptor can be seen below:Interceptor API

http://groovy-lang.org/releasenotes/groovy-2.4.html
https://spring.io/blog/2014/09/04/spring-framework-4-1-ga-is-here
http://projects.spring.io/spring-boot/
http://gradle.org
http://plugins.gradle.org
https://github.com/grails/grails-profile-repository
http://groovy-lang.org/objectorientation.html#_traits

14

class MyInterceptor {

 before() { }boolean true

 after() { }boolean true

void afterView() {
 // no-op
 }

}

1.2.3 Development Environment Features

New Shell and Code Generation API

Replacing Gant, Grails 3.0 features a new interactive command line shell that integrates closely with Gradle and provides APIs for writing scripts that
interact with Gradle and perform code generation.

The new shell integrates closely with the concept of application profiles with each profile capable defining . As with previousprofile specific commands
versions of Grails, plugins can define new shell commands that can invoke Gradle or perform code generation and project automation tasks.

See the new guide on for more information.Creating Custom Scripts

Enhanced IDE Integration

Since Grails 3.0 is built on Gradle, you can now import a Grails project using IntelliJ community edition or GGTS's Gradle tooling support without the
need for Grails specific tooling. Grails 3.0 plugins are published as simple JAR files greatly reducing the need for additional IDE support specific to
Grails.

Application Main Class

Each new Grails 3.0 project features an class that has a traditional signature, meaning to run or debug a GrailsApplication static void main
3.0 application from an IDE like IntelliJ or GGTS you can simply right-click on the class and execute to start your Grails application. AllApplication
Grails 3.0 tests can also just be run from the IDE directly without needing to resort to the command line (even integration / functional tests!).

1.2.4 Testing Features

Integration and Geb Functional Tests

Grails 3.0 supports built in support for Spock/Geb functional tests using the command. Functional tests are based on Spring Boot'screate-functional-test
test running mechanism and load the application just once for an entire suite of tests. The tests can be run from and IDE and don't require the command
line.

Gradle Test Running

Since Grails 3.0 is built on Gradle the test execution configuration is much more flexible and can easily configured to execute in parallel.

https://github.com/grails/grails-profile-repository/tree/master/profiles/web/commands

15

2 Getting Started

2.1 Installation Requirements
Before installing Grails 3.0 you will need as a minimum a Java Development Kit (JDK) installed version 1.7 or above. Download the appropriate JDK for
your operating system, run the installer, and then set up an environment variable called pointing to the location of this installation.JAVA_HOME

To automate the installation of Grails we recommend which greatly simplifies installing and managing multiple Grails versions.SDKMAN

For manual installation, we recommend the video installation guides from :grailsexample.net

Windows

Linux

Mac OS X

These will show you how to install Grails too, not just the JDK.

A JDK is required in your Grails development environment. A JRE is not sufficient.

On some platforms (for example OS X) the Java installation is automatically detected. However in many cases you will want to manually configure the
location of Java. For example:

export JAVA_HOME=/Library/Java/Home
export PATH="$PATH:$JAVA_HOME/bin"

if you're using bash or another variant of the Bourne Shell.

2.2 Downloading and Installing
The first step to getting up and running with Grails is to install the distribution.

The best way to install Grails on *nix systems is with which greatly simplifies installing and managing multiple Grails versions.SDKMAN

For manual installation follow these steps:

http://sdkman.io
http://www.grailsexample.net/
http://www.grailsexample.net/installing-a-grails-development-environment-on-windows/
http://www.grailsexample.net/installing-a-grails-development-environment-on-linux/
http://www.grailsexample.net/installing-a-grails-development-environment-on-os-x/
http://sdkman.io

16

Download a binary distribution of Grails and extract the resulting zip file to a location of your choice

Set the GRAILS_HOME environment variable to the location where you extracted the zip

On Unix/Linux based systems this is typically a matter of adding something like the following export
 to your profileGRAILS_HOME=/path/to/grails

On Windows this is typically a matter of setting an environment variable under My Computer/Advanced/Environment Variables

Then add the directory to your variable:bin PATH

On Unix/Linux based systems this can be done by adding to your profileexport PATH="$PATH:$GRAILS_HOME/bin"

On Windows this is done by modifying the environment variable under Path My Computer/Advanced/Environment Variables

If Grails is working correctly you should now be able to type in the terminal window and see output similar to this:grails -version

bc. Grails version: 3.0.0

2.3 Creating an Application
To create a Grails application you first need to familiarize yourself with the usage of the command which is used in the following manner:grails

grails [command name]

Run to create an application:create-app

grails create-app helloworld

This will create a new directory inside the current one that contains the project. Navigate to this directory in your console:

cd helloworld

2.4 A Hello World Example
Let's now take the new project and turn it into the classic "Hello world!" example. First, change into the "helloworld" directory you just created and start
the Grails interactive console:

https://github.com/grails/grails-core/releases

17

$ cd helloworld
$ grails

You should see a prompt that looks like this:

What we want is a simple page that just prints the message "Hello World!" to the browser. In Grails, whenever you want a new page you just create a new
controller action for it. Since we don't yet have a controller, let's create one now with the command:create-controller

grails> create-controller hello

Don't forget that in the interactive console, we have auto-completion on command names. So you can type "cre" and then press <tab> to get a list of all
 commands. Type a few more letters of the command name and then <tab> again to finish.create-*

The above command will create a new in the directory called controller grails-app/controllers/helloworld
. Why the extra directory? Because in Java land, it's strongly recommended that all classes are placed intoHelloController.groovy helloworld

packages, so Grails defaults to the application name if you don't provide one. The reference page for provides more detail on this.create-controller

We now have a controller so let's add an action to generate the "Hello World!" page. The code looks like this:

package helloworld

class HelloController {

def index() {
 render "Hello World!"
 }
}

The action is simply a method. In this particular case, it calls a special method provided by Grails to the page.render

Job done. To see your application in action, you just need to start up a server with another command called :run-app

grails> run-app

18

This will start an embedded server on port 8080 that hosts your application. You should now be able to access your application at the URL
 - try it!http://localhost:8080/

Note that in previous versions of Grails the context path was by default the name of the application. If you wish to restore this behavior you can configure
a context path in :grails-app/conf/application.yml

server:
 'contextPath': '/helloworld'

With the above configuration in place the server will instead startup at the URL .http://localhost:8080/helloworld/

If you see the error "Server failed to start for port 8080: Address already in use", then it means another server is running on
that port. You can easily work around this by running your server on a different port using .run-app -port=9090
'9090' is just an example: you can pretty much choose anything within the range 1024 to 49151.

The result will look something like this:

This is the Grails intro page which is rendered by the file. It detects the presence of your controllers and providesgrails-app/view/index.gsp
links to them. You can click on the "HelloController" link to see our custom page containing the text "Hello World!". Voila! You have your first working
Grails application.

http://localhost:8080/
http://localhost:8080/helloworld/

19

One final thing: a controller can contain many actions, each of which corresponds to a different page (ignoring AJAX at this point). Each page is
accessible via a unique URL that is composed from the controller name and the action name: /<appname>/<controller>/<action>. This means you can
access the Hello World page via , where 'hello' is the controller name (remove the 'Controller' suffix from the class name and/helloworld/hello/index
lower-case the first letter) and 'index' is the action name. But you can also access the page via the same URL without the action name: this is because
'index' is the . See the end of the section of the user guide to find out more on default actions.default action controllers and actions

2.5 Using Interactive Mode
Grails 3.0 features an interactive mode which makes command execution faster since the JVM doesn't have to be restarted for each command. To use
interactive mode simple type 'grails' from the root of any projects and use TAB completion to get a list of available commands. See the screenshot below
for an example:

For more information on the capabilities of interactive mode refer to the section on in the user guide. Interactive Mode

2.6 Getting Set Up in an IDE

IntelliJ IDEA

 is an excellent IDE for Grails 3.0 development. It comes in 2 editions, the free community edition and the paid-for ultimate edition.IntelliJ IDEA

The community edition can be used for most things, although GSP syntax higlighting is only part of the ultimate edition. To get started with Intellij IDEA
and Grails 3.0 simply go to and point IDEA at your file to import and configure the project.File / Import Project build.gradle

Eclipse

We recommend that users of looking to develop Grails application take a look at , which offers built in support for GrailsEclipse Groovy/Grails Tool Suite
including automatic classpath management, a GSP editor and quick access to Grails commands.

http://localhost:8080/helloworld/hello/index
http://www.jetbrains.com/idea
http://www.eclipse.org/
https://spring.io/tools/ggts

20

Like Intellij you can import a Grails 3.0 project using the Gradle project integration.

NetBeans

NetBeans provides a Groovy/Grails plugin that automatically recognizes Grails projects and provides the ability to run Grails applications in the IDE,
code completion and integration with the Glassfish server. For an overview of features see the guide on the Grails website whichNetBeans Integration
was written by the NetBeans team.

TextMate, Sublime, VIM etc.

There are several excellent text editors that work nicely with Groovy and Grails. See below for references:

A exists Groovy / Grails support in TextMate bundle Textmate

A can be installed via Sublime Package Control for the .Sublime Text plugin Sublime Text Editor

See for some helpful tips on how to setup VIM as your Grails editor of choise.this post

An is available for use with the Atom Package Atom editor

2.7 Convention over Configuration
Grails uses "convention over configuration" to configure itself. This typically means that the name and location of files is used instead of explicit
configuration, hence you need to familiarize yourself with the directory structure provided by Grails.

Here is a breakdown and links to the relevant sections:

grails-app - top level directory for Groovy sources

conf - .Configuration sources

controllers - - The C in MVC.Web controllers

domain - The .application domain

i18n - Support for .internationalization (i18n)

services - The .service layer

taglib - .Tag libraries

utils - Grails specific utilities.

views - - The V in MVC.Groovy Server Pages

scripts - .Code generation scripts

src/main/groovy - Supporting sources

src/test/groovy - .Unit and integration tests

2.8 Running and Debugging an Application
Grails applications can be run with the built in Tomcat server using the command which will load a server on port 8080 by default:run-app

http://www.grails.org/NetBeans+Integration
https://github.com/textmate/groovy-grails.tmbundle
http://macromates.com
https://github.com/osoco/sublimetext-grails
http://www.sublimetext.com
http://www.objectpartners.com/2012/02/21/using-vim-as-your-grails-ide-part-1-navigating-your-project/
https://atom.io/packages/atom-grails
https://atom.io

21

grails run-app

You can specify a different port by using the argument:server.port

grails -Dserver.port=8090 run-app

Note that it is better to start up the application in interactive mode since a container restart is much quicker:

$ grails
grails> run-app
| Server running. Browse to http://localhost:8080/helloworld
| Application loaded in interactive mode. Type 'stop-app' to shutdown.
| Downloading: plugins-list.xml
grails> stop-app
| Stopping Grails server
grails> run-app
| Server running. Browse to http://localhost:8080/helloworld
| Application loaded in interactive mode. Type 'stop-app' to shutdown.
| Downloading: plugins-list.xml

You can debug a grails app by simply right-clicking on the class in your IDE and choosing the appropriate action (since GrailsApplication.groovy
3).

Alternatively, you can run your app with the following command and then attach a remote debugger to it.

grails run-app --debug-jvm

More information on the command can be found in the reference guide. run-app

2.9 Testing an Application
The commands in Grails automatically create unit or integration tests for you within the directory. It is of course up tocreate-* src/test/groovy
you to populate these tests with valid test logic, information on which can be found in the section on .Testing

To execute tests you run the command as follows:test-app

22

grails test-app

2.10 Deploying an Application
Grails applications can be deployed in a number of different ways.

If you are deploying to a traditional container (Tomcat, Jetty etc.) you can create a Web Application Archive (WAR file), and Grails includes the war
command for performing this task:

grails war

This will produce a WAR file under the directory which can then be deployed as per your container's instructions.build/libs

Note that by default Grails will include an embeddable version of Tomcat inside the WAR file, this can cause problems if you deploy to a different
version of Tomcat. If you don't intend to use the embedded container then you should change the scope of the Tomcat dependencies to priorprovided
to deploying to your production container in :build.gradle

provided "org.springframework.boot:spring-boot-starter-tomcat"

Unlike most scripts which default to the environment unless overridden, the command runs in the environment bydevelopment war production
default. You can override this like any script by specifying the environment name, for example:

grails dev war

If you prefer not to operate a separate Servlet container then you can simply run the Grails WAR file as a regular Java application. Example:

23

grails war
java -Dgrails.env=prod -jar build/libs/mywar-0.1.war

When deploying Grails you should always run your containers JVM with the option and with sufficient memory allocation. A good set of VM-server
flags would be:

-server -Xmx768M -XX:MaxPermSize=256m

2.11 Supported Java EE Containers
Grails runs on any container that supports Servlet 3.0 and above and is known to work on the following specific container products:

Tomcat 7

GlassFish 3 or above

Resin 4 or above

JBoss 6 or above

Jetty 8 or above

Oracle Weblogic 12c or above

IBM WebSphere 8.0 or above

It's required to set "-Xverify:none" in "Application servers > server > Process Definition > Java Virtual Machine > Generic
JVM arguments" for older versions of WebSphere. This is no longer needed for WebSphere version 8 or newer.

Some containers have bugs however, which in most cases can be worked around. A can be found on the Grails wiki. list of known deployment issues

2.12 Creating Artefacts
Grails ships with a few convenience targets such as , and so on that will create and different artefact typescreate-controller create-domain-class Controllers
for you.

These are just for your convenience and you can just as easily use an IDE or your favourite text editor.

For example to create the basis of an application you typically need a :domain model

http://grails.org/Deployment

24

grails create-app helloworld
cd helloworld
grails create-domain-class book

This will result in the creation of a domain class at such as:grails-app/domain/helloworld/Book.groovy

package helloworld

class Book {
}

There are many such commands that can be explored in the command line reference guide.create-*

To decrease the amount of time it takes to run Grails scripts, use the interactive mode.

2.13 Generating an Application
To get started quickly with Grails it is often useful to use a feature called to generate the skeleton of an application. To do this use one of the Scaffolding

 commands such as , which will generate a (and its unit test) and the associated :generate-* generate-all controller views

grails generate-all helloworld.Book

25

3 Upgrading from previous versions of Grails
Grails 3.0 is a complete ground up rewrite of Grails and introduces new concepts and components for many parts of the framework.

When upgrading an application or plugin from Grails 3.0 there are many areas to consider including:

Removal of dynamic scaffolding from Grails 3.0.0 till 3.0.4 when it was re-introduced

Removal of before and after interceptors

Project structure differences

File location differences

Configuration differences

Package name differences

Legacy Gant Scripts

Gradle Build System

Changes to Plugins

Source vs Binary Plugins

The best approach to take when upgrading a plugin or application (and if your application is using several plugins the plugins will need upgrading first) is
to create a new Grails 3.0 application of the same name and copy the source files into the correct locations in the new application.

Removal of before and after interceptors

Before and after interceptors were removed. So all and need to be replaced by Stand alone interceptors.beforeInterceptor afterInterceptor

File Location Differences

The location of certain files have changed or been replaced with other files in Grails 3.0. The following table lists old default locations and their respective
new locations:

26

Old Location New Location

grails-app/conf/BuildConfig.groovy build.gradle

grails-app/conf/Config.groovy grails-app/conf/application.groovy

grails-app/conf/UrlMappings.groovy grails-app/controllers/UrlMappings.groovy

grails-app/conf/BootStrap.groovy grails-app/init/BootStrap.groovy

scripts src/main/scripts

src/groovy src/main/groovy

src/java src/main/groovy

test/unit src/test/groovy

test/integration src/integration-test/groovy

web-app src/main/webapp or src/main/resources/

*GrailsPlugin.groovy src/main/groovy

 is recommended as only gets included in WAR packaging but not in JAR packaging.src/main/resources/public src/main/webapp

For plugins the plugin descriptor (a Groovy file ending with "GrailsPlugin") which was previously located in the root of the plugin directory should be
moved to the directory under an appropriate package.src/main/groovy

New Files Not Present in Grails 2.x

The reason it is best to create a new application and copy your original sources to it is because there are a number of new files that are not present in
Grails 2.x by default. These include:

File Description

build.gradle The Gradle build descriptor located in the root of the project

gradle.properties Properties file defining the Grails and Gradle versions

grails-app/conf/logback.groovy Logging previously defined in is now defined using LogbackConfig.groovy

grails-app/conf/application.yml Configuration can now also be defined using YAML

grails-app/init/PACKAGE_PATH/Application.groovy The class used By Spring Boot to start the applicationApplication

Files Not Present in Grails 3.x

Some files that were previously created by Grails 2.x are no longer created. These have either been removed or an appropriate replacement added. The
following table lists files no longer in use:

27

File Description

application.properties The application name and version is now defined in build.gradle

grails-app/conf/DataSource.groovy Merged together into application.yml

lib Dependency resolution should be used to resolve JAR files

web-app/WEB-INF/applicationContext.xml Removed, beans can be defined in grails-app/conf/spring/resources.groovy

src/templates/war/web.xml Grails 3.0 no longer requires web.xml. Customizations can be done via Spring

web-app/WEB-INF/sitemesh.xml Removed, sitemesh filter no longer present.

web-app/WEB-INF/tld Removed, can be restored in or src/main/webapp src/main/resources/WEB-INF

3.1 Upgrading from Grails 3.0
Generally to upgrade an application from Grails 3.0 you can simply modify the version of Grails in .gradle.properties

There are however some differences to Grails 3.0.x that are documented below.

GORM 5 Upgrade

Grails 3.1 ships with GORM 5, which is a near complete rewrite of GORM ontop of Groovy traits and is not binary compatible with the previous version
of GORM.

If you receive an error such as:

Caused by: java.lang.ClassNotFoundException: org.grails.datastore.gorm.GormEntity$Trait$FieldHelper
 … 8 more

You are using a plugin or class that was compiled with a previous version of GORM and these will need to be recompiled to be Grails 3.1 and GORM 5
compatible.

Hibernate Plugin

For the GORM 5 release the plugin has been renamed to (and there are and versions too).hibernate hibernate4 hibernate3 hibernate5
You should change your to reflect that:build.gradle

compile 'org.grails.plugins:hibernate4'

Static Resources Path

28

The default path for static resources resolved from has been changed to be nested under the patternsrc/main/resources/public static/*
instead of directly under the root of the application. For example a link in GSP pages such as:

${g.resource(dir:'files', file:'mydoc.pdf')}

Will produce a URI such as instead of . If you wish to revert to the previous behavior you can/static/files/mydoc.pdf /files/mydoc.pdf
configure this in :application.yml

grails:
 resources:
 pattern: '/**'

Filters Plugin Removed

The Filters plugin was replaced by in Grails 3.0.x, although the plugin was still present. In Grails 3.1.x the Filters plugin has been removed. IfInterceptors
you still wish to use the filters plugin you can add a dependency on the previous version provided by Grails 3.0.x. For example:

compile 'org.grails:grails-plugin-filters:3.0.12'

Spring Transactional Proxies

Because the transform already provides the ability to create transactional services without the need forgrails.transactional.Transactional
proxies, traditional support for transactional proxies has been disabled by default.

This means that if you have any services that use the property and not the annotation they will need to be altered.transactional Transactional
For example the following service:

class FooService {
 transactional = static true
}

29

Becomes:

import grails.transaction.Transactional

@Transactional
class FooService {

}

In addition because in previous versions of a Grails defaulted to any services that do not declare should betransactional true transactional
altered too.

If you wish to revert to the previous behavior then transctional proxies can be re-enabled with the following configuration:

grails:
 spring:
 transactionManagement:
 proxies: true

JSON Converter changes

The default JSON converter no longer includes the property by default. This can be re-enable with the following configuration:class

grails:
 converters:
 domain:
 include:
 class: true

In addition the default JSON converter will no longer render the property if it is .id null

JSON Builder Groovy Alignment

The class has been deprecated and replaced with , the default JSON builder withingrails.web.JSONBuilder groovy.json.StreamingJsonBuilder
Groovy. This avoids confusion with the differences between JSON builders and better aligns with Groovy's core libraries.

This also means that any blocks that rendered JSON will need to be updated to use the syntax. For examplerender groovy.json.StreamingJsonBuilder
the following code:

http://docs.groovy-lang.org/latest/html/gapi/groovy/json/StreamingJsonBuilder.html
http://docs.groovy-lang.org/latest/html/gapi/groovy/json/StreamingJsonBuilder.html

30

render(contentType:) {"application/json"
 title = "The Stand"
}

Should instead be written as:

render(contentType:) {"application/json"
 title "The Stand"
}

If you are upgrading and prefer to continue to use the previous implementation then you can re-enable the deprecated JSONBuilder with the following
configuration:

grails:
 json:
 legacy:
 builder: true

JSON Views Replace JSON Converters

With the addition of JSON views the previous API for using JSON converters is largely discouraged in favour of views. The converters plugin will in the
future be separated into an external plugin and JSON views phased in to replace it. The JSON converter API is not deprecated, however JSON views
provide a more fully featured, elegant API that is superior to writing JSON converters and/or marshallers.

Spring Boot 1.3 and Spring 4.2

Grails 3.1 ships with upgraded third party libraries that may require changes. See the for information.Spring Boot upgrade notes

Unlike Spring Boot 1.2, Spring Boot 1.3 no longer uses the so if you relied on any behavior the application plugin then theGradle Application Plugin
plugin will need to be re-applied to your .build.gradle

Spring Boot 1.3 also uses Spring Security 4.x by default, so if you project depends on Spring Security 3.x you have to force a downgrade. For example:

https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-1.3-Release-Notes
https://docs.gradle.org/current/userguide/application_plugin.html

31

compile 'org.springframework.security:spring-security-core:3.2.9.RELEASE'
compile 'org.springframework.security:spring-security-web:3.2.9.RELEASE'

Gradle task no longer available by defaultrun

Because the Gradle task for application startup was provided by the (see above), it is no longer available by default. If yourun Gradle Application Plugin
use Gradle to start up your application, use the task instead, or re-apply the Application plugin in your .bootRun build.gradle

Note: If you don't have need of the Gradle Application plugin's features, but have custom Gradle tasks or IDE configurations that depend on , you canrun
supply your own task that depends on in your :run bootRun build.gradle

task run(dependsOn: ['bootRun'])

Resource annotation defaults to JSON instead of XML

The annotation applied to domain classes defaults to XML in Grails 3.0.x, but in Grails 3.1.x and above it defaults to JSON.Resource

If you use this annotation with the expecation of produces XML responses as the default you can modify the definition as follows:

import grails. .*rest

@Resource(formats=['xml', 'json'])
class MyDomainClass {}

This will restore the Grails 3.0.x behavior.

Geb and HTMLUnit 2.18

If you use Geb with HTMLUnit (something that is not recommended, as a more native driver such as PhantomJS is recommended) you will need to
upgrade your dependencies in :build.grade

https://docs.gradle.org/current/userguide/application_plugin.html
http://grails.github.io/grails-doc/3.0.x/api/grails/rest/Resource.html

32

testRuntime 'org.seleniumhq.selenium:selenium-htmlunit-driver:2.47.1'
 testRuntime 'net.sourceforge.htmlunit:htmlunit:2.18'

Note that there are also some changes in behavior in HTMLUnit 2.18 that may cause issues in existing tests including:

Expressions that evaluate the title (Example) now return blank and should be replaced with just $('title') title

If you return plain text in a response without surrounding HTML tags, these are no longer regarded as valid responses and should be wrapped in the
required tags.

3.2 Upgrading from Grails 2.x
This guide takes you through the fundamentals of upgrading a Grails 2.x application or plugins to Grails 3.x.

3.2.1 Upgrading Plugins
To upgrade a Grails 2.x plugin to Grails 3.x you need to make a number of different changes. This documentation will outline the steps that were taken to
upgrade the Quartz plugin to Grails 3, each individual plugin may differ.

Step 1 - Create a new Grails 3 plugin

The first step is to create a new Grails 3 plugin using the command line:

$ grails create-plugin quartz

This will create a Grails 3 plugin in the directory.quartz

Step 2 - Copy sources from the original Grails 2 plugin

The next step is to copy the sources from the original Grails 2 plugin to the Grails 3 plugin:

33

first the sources
cp -rf ../quartz-2.x/src/groovy/ src/main/groovy
cp -rf ../quartz-2.x/src/java/ src/main/groovy
cp -rf ../quartz-2.x/grails-app/ grails-app
cp -rf ../quartz-2.x/QuartzGrailsPlugin.groovy src/main/groovy/grails/plugins/quartz

then the tests
cp -rf ../quartz-2.x/test/unit/* src/test/groovy
mkdir -p src/integration-test/groovy
cp -rf ../quartz-2.x/test/integration/* src/integration-test/groovy

then templates / other resources
cp -rf ../quartz-2.x/src/templates/ src/main/templates

Step 3 - Alter the plugin descriptor

You will need to add a package declaration to the plugin descriptor. In this case is modified as follows:QuartzGrailsPlugin

// add declarationpackage
 grails.plugins.quartzpackage

…
class QuartzGrailsPlugin {
 …
}

In addition you should remove the property from the descriptor as this is now defined in .version build.gradle

Step 4 - Update the Gradle build with required dependencies

The repositories and dependencies defined in of the original Grails 2.x plugin will need to be definedgrails-app/conf/BuildConfig.groovy
in of the new Grails 3.x plugin:build.gradle

compile() {"org.quartz-scheduler:quartz:2.2.1"
 exclude group: 'slf4j-api', module: 'c3p0'
 }

Step 5 - Modify Package Imports

In Grails 3.x all internal APIs can be found in the package and public facing APIs in the package. The org.grails grails
 package no longer exists.org.codehaus.groovy.grails

34

All package declaration in sources should be modified for the new location of the respective classes. Example
 is now .org.codehaus.groovy.grails.commons.GrailsApplication grails.core.GrailsApplication

Step 5 - Migrate Plugin Specific Config to application.yml

Some plugins define a default configuration file. For example the Quartz plugin defines a file called
. In Grails 3.x this default configuration can be migrated to grails-app/conf/DefaultQuartzConfig.groovy

 and it will automatically be loaded by Grails without requiring manual configuration merging.grails-app/conf/application.yml

Step 6 - Update plugin exclusions

Old plugins may have a property defined that lists the patterns for any files that should not be included in the plugin package. This ispluginExcludes
normally used to exclude artifacts such as domain classes that are used in the plugin's integration tests. You generally don't want these polluting the target
application.

This property is no longer sufficient in Grails 3, and nor can you use source paths. Instead, you must specify patterns that match the paths of the compiled
classes. For example, imagine you have some test domain classes in the directory. You should first changegrails-app/domain/plugin/tests
the value topluginExcludes

def pluginExcludes = []"plugin/test/**"

and then add this block to the build file:

jar {
 exclude "plugin/test/**"
}

The easiest way to ensure these patterns work effectively is to put all your non-packaged class into a distinct Java package so that there is a clean
separation between the main plugin classes and the rest.

Step 7 - Register ArtefactHandler Definitions

In Grails 3.x definitions written in Java need to be declared in a file called ArtefactHandler
 since these need to be known at compile time.src/main/resources/META-INF/grails.factories

If the is written in Groovy this step can be skipped as Grails will automatically create the ArtefactHandler
 file during compilation.grails.factories

The Quartz plugin requires the following definition to register the :ArtrefactHandler

http://grails.github.io/grails-doc/3.0.x/api/grails/core/ArtefactHandler.html

35

grails.core.ArtefactHandler=grails.plugins.quartz.JobArtefactHandler

Step 8 - Migrate Code Generation Scripts

Many plugins previously defined command line scripts in Gant. In Grails 3.x command line scripts have been replaced by two new features: Code
generation scripts and Gradle tasks.

If your script is doing simple code generation then for many cases a code generation script can replace an old Gant script.

The script provided by the Quartz plugin in Grails 2.x was defined in as:create-job scripts/CreateJob.groovy

includeTargets << grailsScript()"_GrailsCreateArtifacts"

target(createJob:) {"Creates a Quartz scheduled job"new
 depends(checkVersion, parseArguments)

def type = "Job"
 promptForName(type: type)

 (name in argsMap.params) {for
 name = purgeRedundantArtifactSuffix(name, type)
 createArtifact(name: name, suffix: type, type: type, path:)"grails-app/jobs"
 createUnitTest(name: name, suffix: type)
 }
}

setDefaultTarget 'createJob'

A replacement Grails 3.x compatible script can be created using the command:create-script

$ grails create-script create-job

Which creates a new script called . Using the new code generation API it is simple to implement:src/main/scripts/create-job.groovy

36

description() {"Creates a Quartz scheduled job"new
 usage "grails create-job [JOB NAME]"
 argument name:'Job Name', description:"The name of the job"
}

model = model(args[0])
render template: ,"Job.groovy"
 destination: file(),"grails-app/jobs/$model.packagePath/${model.simpleName}Job.groovy"
 model: model

Please refer to the documentation on for more information.Creating Custom Scripts

Migrating More Complex Scripts Using Gradle Tasks

Using the old Grails 2.x build system it was relatively common to spin up Grails inside the command line. In Grails 3.x it is not possible to load a Grails
application within a code generation script created by the command.create-script

Instead a new mechanism specific to plugins exists via the command. The command will create a new create-command create-command
, for example the following command will execute a query:ApplicationCommand

import grails.dev.commands.*
 javax.sql.*import
 groovy.sql.*import
 org.springframework.beans.factory.annotation.*import

class RunQueryCommand ApplicationCommand {implements

@Autowired
 DataSource dataSource

 handle(ExecutionContext ctx) {boolean
 def sql = Sql(dataSource)new
 println sql.executeQuery()"select * from foo"
 return true
 }
}

With this command in place once the plugin is installed into your local Maven cache you can add the plugin to both the build classpath and the runtime
classpath of the application's file:build.gradle

http://grails.github.io/grails-doc/3.0.x/api/grails/dev/commands/ApplicationCommand.html

37

buildscript {
 …
 dependencies {
 classpath "org.grails.plugins:myplugin:0.1-SNAPSHOT"
 }
}
…
dependencies {
 runtime "org.grails.plugins:myplugin:0.1-SNAPSHOT"
}

Grails will automatically create a Gradle task called and a command named so both the following examples will execute therunQuery run-query
command:

$ grails run-query
$ gradle runQuery

Step 8 - Delete Files that were migrated or no longer used

You should now delete and cleanup the project of any files no longer required by Grails 3.x (, , BuildConfig.groovy Config.groovy
 etc.)DataSource.groovy

3.2.2 Upgrading Applications
Upgrading applications to Grails 3.x will require that you upgrade all plugins the application uses first, hence you should follow the steps in the previous
section to first upgrade your plugins.

Step 1 - Create a New Application

Once the plugins are Grails 3.x compatible you can upgrade the application. To upgrade an application it is again best to create a new Grails 3 application
using the "web" profile:

$ grails create-app myapp
$ cd myapp

Step 2 - Migrate Sources

The next step is to copy the sources from the original Grails 2 application to the Grails 3 application:

38

first the sources
cp -rf ../old_app/src/groovy/ src/main/groovy
cp -rf ../old_app/src/java/ src/main/groovy
cp -rf ../old_app/grails-app/ grails-app

then the tests
cp -rf ../old_app/test/unit/ src/test/groovy
mkdir -p src/integration-test/groovy
cp -rf ../old_app/test/integration/ src/integration-test/groovy

Step 3 - Update the Gradle build with required dependencies

The repositories and dependencies defined in of the original Grails 2.x application will need to begrails-app/conf/BuildConfig.groovy
defined in of the new Grails 3.x application.build.gradle

Step 4 - Modify Package Imports

In Grails 3.x all internal APIs can be found in the package and public facing APIs in the package. The org.grails grails
 package no longer exists.org.codehaus.groovy.grails

All package declaration in sources should be modified for the new location of the respective classes. Example
 is now .org.codehaus.groovy.grails.commons.GrailsApplication grails.core.GrailsApplication

Step 5 - Migrate Configuration

The configuration of the application will need to be migrated, this can normally be done by simply renaming grails-app/conf/Config.groovy
to and merging the content of into grails-app/conf/application.groovy grails-app/conf/DataSource.groovy

.grails-app/conf/application.groovy

Note however that Log4j has been replaced by for logging, so any logging configuration in grails-app/conf/logback.groovy
 should be migrated to .grails-app/conf/Config.groovy logback format

Step 6 - Migrate web.xml Modifications to Spring

If you have a modified template then you will need to migrate this to Spring as Grails 3.x does not use a web.xml (although it is still possible toweb.xml
have on in).src/main/webapp/WEB-INF/web.xml

New servlets and filters can be registered as Spring beans or with and respectively.ServletRegistrationBean FilterRegistrationBean

Step 7 - Migrate Static Assets not handled by Asset Pipeline

If you have static assets in your directory of your Grails 2.x application such as HTML files, TLDs etc. these need to be moved. For publicweb-app
assets such as static HTML pages and so on these should go in .src/main/resources/public

TLD descriptors and non public assets should go in .src/main/resources/WEB-INF

As noted earlier, folder can also be used for this purpose but it is not recommended.src/main/webapp

http://logback.qos.ch/manual/groovy.html
http://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/context/embedded/ServletRegistrationBean.html
http://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/context/embedded/FilterRegistrationBean.html

39

Step 8 - Migrate Tests

Once the package names are corrected unit tests will continue to run, however any tests that extend the deprecated and removed JUnit 3 hierarchy will
need to be migrated to Spock or JUnit 4.

Integration tests will need to be annotated with the annotation and should not extend GroovyTestCase or any JUnit 3 super class. Integration

http://grails.github.io/grails-doc/3.0.x/api/grails/test/mixin/integration/Integration.html

40

4 Configuration
It may seem odd that in a framework that embraces "convention-over-configuration" that we tackle this topic now. With Grails' default settings you can
actually develop an application without doing any configuration whatsoever, as the quick start demonstrates, but it's important to learn where and how to
override the conventions when you need to. Later sections of the user guide will mention what configuration settings you can use, but not how to set them.
The assumption is that you have at least read the first section of this chapter!

4.1 Basic Configuration
Configuration in Grails is generally split across 2 areas: build configuration and runtime configuration.

Build configuration is generally done via Gradle and the file. Runtime configuration is by default specified in YAML in the build.gradle
 file.grails-app/conf/application.yml

If you prefer to use Grails 2.0-style Groovy configuration then you can create an additional file tograils-app/conf/application.groovy
specify configuration using Groovy's syntax.ConfigSlurper

For Groovy configuration the following variables are available to the configuration script:

Variable Description

userHome Location of the home directory for the account that is running the Grails application.

grailsHome Location of the directory where you installed Grails. If the environment variable is set, it is used.GRAILS_HOME

appName The application name as it appears in application.properties.

appVersion The application version as it appears in application.properties.

For example:

my.tmp.dir = "${userHome}/.grails/tmp"

If you want to read runtime configuration settings, i.e. those defined in , use the object, which is availableapplication.yml grailsApplication
as a variable in controllers and tag libraries:

class MyController {
 def hello() {
 def recipient = grailsApplication.config.getProperty('foo.bar.hello')

render "Hello ${recipient}"
 }
}

http://groovy.codehaus.org/ConfigSlurper
http://grails.github.io/grails-doc/3.0.x/api/grails/core/GrailsApplication.html

41

The property of the object is an instance of the interface and provides a number of useful methods to read theconfig grailsApplication Config
configuration of the application.

In particular, the method (seen above) is useful for efficiently retrieving configuration properties, while specifying the property type (thegetProperty
default type is String) and/or providing a default fallback value.

class MyController {

def hello(Recipient recipient) {
 //Retrieve property 'foo.bar.max.hellos', otherwise use value of 5Integer
 def max = grailsApplication.config.getProperty('foo.bar.max.hellos', , 5)Integer

//Retrieve property 'foo.bar.greeting' without specifying type (is), otherwise use value default String "Hello"
 def greeting = grailsApplication.config.getProperty('foo.bar.greeting',)"Hello"

def message = (recipient.receivedHelloCount >= max) ?
 : "Sorry, you've been greeted the max number of times" "${greeting}, ${recipient}"
 }

render message
 }
}

Notice that the instance is a merged configuration based on Spring's concept and reads configuration from the environment,Config PropertySource
system properties and the local application configuration merging them into a single object.

 can be easily injected into services and other Grails artifacts:GrailsApplication

import grails.core.*

class MyService {
 GrailsApplication grailsApplication

 greeting() {String
 def recipient = grailsApplication.config.getProperty('foo.bar.hello')
 return "Hello ${recipient}"
 }
}

Finally, you can also use Spring's annotation to inject configuration values:Value

http://grails.github.io/grails-doc/3.0.x/api/grails/config/Config.html
http://docs.spring.io/spring/docs/4.0.x/javadoc-api/org/springframework/context/annotation/PropertySource.html
http://docs.spring.io/spring/docs/4.0.x/javadoc-api/org/springframework/beans/factory/annotation/Value.html

42

import org.springframework.beans.factory.annotation.*

class MyController {
 @Value('${foo.bar.hello}')
 recipientString

def hello() {
 render "Hello ${recipient}"
 }
}

In Groovy code you must use single quotes around the string for the value of the annotation otherwise it isValue
interpreted as a GString not a Spring expression.

As you can see, when accessing configuration settings you use the same dot notation as when you define them.

4.1.1 Options for the yml format Config
 was introduced in Grails 3.0 for an alternative format for the configuration tasks.application.yml

Using system properties / command line arguments

Suppose you are using the command line argument and you want to access the same in the yml file then it can be done inJDBC_CONNECTION_STRING
the following manner:

production:
 dataSource:
 url: '${JDBC_CONNECTION_STRING}'

Similarly system arguments can be accessed.

You will need to have this in to modify the target if is used to start the applicationbuild.gradle bootRun grails run-app

run {
 systemProperties = .propertiesSystem
}

For testing the following will need to change the task as followstest

43

test {
 systemProperties = .properties System
}

4.1.2 Built in options
Grails has a set of core settings that are worth knowing about. Their defaults are suitable for most projects, but it's important to understand what they do
because you may need one or more of them later.

Runtime settings

On the runtime front, i.e. , there are quite a few more core settings:grails-app/conf/application.yml

grails.enable.native2ascii - Set this to false if you do not require native2ascii conversion of Grails i18n properties files (default: true).

grails.views.default.codec - Sets the default encoding regime for GSPs - can be one of 'none', 'html', or 'base64' (default: 'none'). To
reduce risk of XSS attacks, set this to 'html'.

grails.views.gsp.encoding - The file encoding used for GSP source files (default: 'utf-8').

grails.mime.file.extensions - Whether to use the file extension to dictate the mime type in (default: true).Content Negotiation

grails.mime.types - A map of supported mime types used for .Content Negotiation

grails.serverURL - A string specifying the server URL portion of absolute links, including server name e.g.
grails.serverURL="http://my.yourportal.com". See . Also used by redirects.createLink

grails.views.gsp.sitemesh.preprocess - Determines whether SiteMesh preprocessing happens. Disabling this slows down page
rendering, but if you need SiteMesh to parse the generated HTML from a GSP view then disabling it is the right option. Don't worry if you don't
understand this advanced property: leave it set to true.

grails.reload.excludes and - Configuring these directives determines the reload behavior for projectgrails.reload.includes
specific source files. Each directive takes a list of strings that are the class names for project source files that should be excluded from reloading
behavior or included accordingly when running the application in development with the command. If the run-app grails.reload.includes
directive is configured, then only the classes in that list will be reloaded.

4.1.3 Logging
By default logging in Grails 3.0 is handled by the and can be configured with the Logback logging framework

 file.grails-app/conf/logback.groovy

If you prefer XML you can replace the file with a file instead.logback.groovy logback.xml

For more information on configuring logging refer to the on the subject. Logback documentation

http://logback.qos.ch
http://logback.qos.ch/manual/groovy.html

44

4.1.4 GORM
Grails provides the following GORM configuration options:

grails.gorm.failOnError - If set to , causes the method on domain classes to throw a true save()
 if fails during a save. This option may also be assigned a list of Stringsgrails.validation.ValidationException validation

representing package names. If the value is a list of Strings then the failOnError behavior will only be applied to domain classes in those packages
(including sub-packages). See the method docs for more information.save

For example, to enable failOnError for all domain classes:

grails:
 gorm:
 failOnError: true

and to enable failOnError for domain classes by package:

grails:
 gorm:
 failOnError:
 - com.companyname.somepackage
 - com.companyname.someotherpackage

grails.gorm.autoFlush - If set to , causes the , and methods to flush the session, replacing the need to explicitly flushtrue merge save delete
using .save(flush: true)

4.2 The Application Class
Every new Grails application features an class witin the the directory.Application grails-app/init

The class subclasses the class and features a method, meaning it can be run as a regularApplication GrailsAutoConfiguration static void main
application.

4.2.1 Executing the Application Class
There are several ways to execute the class, if you are using an IDE then you can simply right click on the class and run it directly fromApplication
your IDE which will start your Grails application.

This is also useful for debugging since you can debug directly from the IDE without having to connect a remote debugger when using the run-app
 command from the command line.--debug-jvm

You can also package your application into a runnable WAR file, for example:

http://grails.github.io/grails-doc/3.0.x/api/grails/boot/config/GrailsAutoConfiguration.html

45

$ grails package
$ java -jar build/libs/myapp-0.1.war

This is useful if you plan to deploy your application using a container-less approach.

4.2.2 Customizing the Application Class
There are several ways in which you can customize the class.Application

Customizing Scanning

By default Grails will scan all known source directories for controllers, domain class etc., however if there are packages in other JAR files you wish to
scan you can do so by overriding the method of the class:packageNames() Application

class Application GrailsAutoConfiguration {extends
 @Override
 Collection< > packageNames() {String
 .packageNames() + ['my.additional. ']super package
 }

…
}

Registering Additional Beans

The class can also be used as a source for Spring bean definitions, simply define a method annotated with the and the returnedApplication Bean
object will become a Spring bean. The name of the method is used as the bean name:

class Application GrailsAutoConfiguration {extends
 @Bean
 MyType myBean() {
 MyType()return new
 }

…
}

4.2.3 The Application LifeCycle
The class also implements the interface which all plugins implement.Application GrailsApplicationLifeCycle

http://docs.spring.io/spring/docs/4.0.x/javadoc-api/org/springframework/context/annotation/Bean.html
http://grails.github.io/grails-doc/3.0.x/api/grails/core/GrailsApplicationLifeCycle.html

46

This means that the class can be used to perform the same functions as a plugin. You can override the such as Application regular plugins hooks
, and so on by overriding the appropriate method:doWithSpring doWithApplicationContext

class Application GrailsAutoConfiguration {extends
 @Override
 Closure doWithSpring() {
 {->
 mySpringBean(MyType)
 }
 }

…
}

4.3 Environments

Per Environment Configuration

Grails supports the concept of per environment configuration. The and files in the application.yml application.groovy
 directory can use per-environment configuration using either YAML or the syntax provided by . As an examplegrails-app/conf ConfigSlurper

consider the following default definition provided by Grails:application.yml

environments:
 development:
 dataSource:
 dbCreate: create-drop
 url: jdbc:h2:mem:devDb;MVCC=TRUE;LOCK_TIMEOUT=10000;DB_CLOSE_ON_EXIT=FALSE
 test:
 dataSource:
 dbCreate: update
 url: jdbc:h2:mem:testDb;MVCC=TRUE;LOCK_TIMEOUT=10000;DB_CLOSE_ON_EXIT=FALSE
 production:
 dataSource:
 dbCreate: update
 url: jdbc:h2:prodDb;MVCC=TRUE;LOCK_TIMEOUT=10000;DB_CLOSE_ON_EXIT=FALSE
 properties:
 jmxEnabled: true
 initialSize: 5
 ...

The above can be expressed in Groovy syntax in as follows:application.groovy

http://groovy.codehaus.org/ConfigSlurper

47

dataSource {
 pooled = false
 driverClassName = "org.h2.Driver"
 username = "sa"
 password = ""
}
environments {
 development {
 dataSource {
 dbCreate = "create-drop"
 url = "jdbc:h2:mem:devDb"
 }
 }
 test {
 dataSource {
 dbCreate = "update"
 url = "jdbc:h2:mem:testDb"
 }
 }
 production {
 dataSource {
 dbCreate = "update"
 url = "jdbc:h2:prodDb"
 }
 }
}

Notice how the common configuration is provided at the top level and then an block specifies per environment settings for the environments
 and properties of the .dbCreate url DataSource

Packaging and Running for Different Environments

Grails' has built in capabilities to execute any command within the context of a specific environment. The format is:command line

grails [environment] [command name]

In addition, there are 3 preset environments known to Grails: , , and for , and . For example todev prod test development production test
create a WAR for the environment you wound run:test

grails test war

To target other environments you can pass a variable to any command:grails.env

48

grails -Dgrails.env=UAT run-app

Programmatic Environment Detection

Within your code, such as in a Gant script or a bootstrap class you can detect the environment using the class:Environment

import grails.util.Environment

...

 (Environment.current) {switch
 Environment.DEVELOPMENT:case
 configureForDevelopment()
 break
 Environment.PRODUCTION:case
 configureForProduction()
 break
}

Per Environment Bootstrapping

It's often desirable to run code when your application starts up on a per-environment basis. To do so you can use the
 file's support for per-environment execution:grails-app/init/BootStrap.groovy

def init = { ServletContext ctx ->
 environments {
 production {
 ctx.setAttribute(,)"env" "prod"
 }
 development {
 ctx.setAttribute(,)"env" "dev"
 }
 }
 ctx.setAttribute(,)"foo" "bar"
}

Generic Per Environment Execution

The previous example uses the class internally to execute. You can also use this class yourself to executeBootStrap grails.util.Environment
your own environment specific logic:

http://grails.github.io/grails-doc/3.0.x/api/grails/util/Environment.html

49

Environment.executeForCurrentEnvironment {
 production {
 // something in productiondo
 }
 development {
 // something only in developmentdo
 }
}

4.4 The DataSource
Since Grails is built on Java technology setting up a data source requires some knowledge of JDBC (the technology that doesn't stand for Java Database
Connectivity).

If you use a database other than H2 you need a JDBC driver. For example for MySQL you would need .Connector/J

Drivers typically come in the form of a JAR archive. It's best to use the dependency resolution to resolve the jar if it's available in a Maven repository, for
example you could add a dependency for the MySQL driver like this:

dependencies {
 runtime 'mysql:mysql-connector-java:5.1.29'
}

If you can't use dependency resolution then just put the JAR in your project's directory.lib

Once you have the JAR resolved you need to get familiar with how Grails manages its database configuration. The configuration can be maintained in
either or . These files contain the dataSource definitiongrails-app/conf/application.groovy grails-app/conf/application.yml
which includes the following settings:

http://www.mysql.com/downloads/connector/j/

50

driverClassName - The class name of the JDBC driver

username - The username used to establish a JDBC connection

password - The password used to establish a JDBC connection

url - The JDBC URL of the database

dbCreate - Whether to auto-generate the database from the domain model - one of 'create-drop', 'create', 'update' or 'validate'

pooled - Whether to use a pool of connections (defaults to true)

logSql - Enable SQL logging to stdout

formatSql - Format logged SQL

dialect - A String or Class that represents the Hibernate dialect used to communicate with the database. See the package fororg.hibernate.dialect
available dialects.

readOnly - If makes the DataSource read-only, which results in the connection pool calling on each true setReadOnly(true)
Connection

transactional - If leaves the DataSource's transactionManager bean outside the chained BE1PC transaction manager implementation.false
This only applies to additional datasources.

persistenceInterceptor - The default datasource is automatically wired up to the persistence interceptor, other datasources are not wired up
automatically unless this is set to true

properties - Extra properties to set on the DataSource bean. See the documentation. There is also a Javadoc format Tomcat Pool documentation
.of the properties

jmxExport - If , will disable registration of JMX MBeans for all DataSources. By default JMX MBeans are added for DataSources with false
 in properties.jmxEnabled = true

A typical configuration for MySQL in may be something like:application.groovy

http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/dialect/package-summary.html
http://tomcat.apache.org/tomcat-7.0-doc/jdbc-pool.html#Common_Attributes
https://tomcat.apache.org/tomcat-7.0-doc/api/org/apache/tomcat/jdbc/pool/PoolConfiguration.html
https://tomcat.apache.org/tomcat-7.0-doc/api/org/apache/tomcat/jdbc/pool/PoolConfiguration.html

51

dataSource {
 pooled = true
 dbCreate = "update"
 url = "jdbc:mysql://localhost:3306/my_database"
 driverClassName = "com.mysql.jdbc.Driver"
 dialect = org.hibernate.dialect.MySQL5InnoDBDialect
 username = "username"
 password = "password"
 properties {
 jmxEnabled = true
 initialSize = 5
 maxActive = 50
 minIdle = 5
 maxIdle = 25
 maxWait = 10000
 maxAge = 10 * 60000
 timeBetweenEvictionRunsMillis = 5000
 minEvictableIdleTimeMillis = 60000
 validationQuery = "SELECT 1"
 validationQueryTimeout = 3
 validationInterval = 15000
 testOnBorrow = true
 testWhileIdle = true
 testOnReturn = false
 jdbcInterceptors = "ConnectionState;StatementCache(max=200)"
 defaultTransactionIsolation = java.sql.Connection.TRANSACTION_READ_COMMITTED
 }
}

When configuring the DataSource do not include the type or the def keyword before any of the configuration settings as
Groovy will treat these as local variable definitions and they will not be processed. For example the following is invalid:

dataSource {
 pooled = // type declaration results in ignored local variableboolean true
 …
}

Example of advanced configuration using extra properties:

52

dataSource {
 pooled = true
 dbCreate = "update"
 url = "jdbc:mysql://localhost:3306/my_database"
 driverClassName = "com.mysql.jdbc.Driver"
 dialect = org.hibernate.dialect.MySQL5InnoDBDialect
 username = "username"
 password = "password"
 properties {
 // Documentation Tomcat JDBC Poolfor
 // http://tomcat.apache.org/tomcat-7.0-doc/jdbc-pool.html#Common_Attributes
 // https://tomcat.apache.org/tomcat-7.0-doc/api/org/apache/tomcat/jdbc/pool/PoolConfiguration.html
 jmxEnabled = true
 initialSize = 5
 maxActive = 50
 minIdle = 5
 maxIdle = 25
 maxWait = 10000
 maxAge = 10 * 60000
 timeBetweenEvictionRunsMillis = 5000
 minEvictableIdleTimeMillis = 60000
 validationQuery = "SELECT 1"
 validationQueryTimeout = 3
 validationInterval = 15000
 testOnBorrow = true
 testWhileIdle = true
 testOnReturn = false
 ignoreExceptionOnPreLoad = true
 // http://tomcat.apache.org/tomcat-7.0-doc/jdbc-pool.html#JDBC_interceptors
 jdbcInterceptors = "ConnectionState;StatementCache(max=200)"
 defaultTransactionIsolation = java.sql.Connection.TRANSACTION_READ_COMMITTED // safe default
 // controls leaked connections for
 abandonWhenPercentageFull = 100 // settings are active only when pool is full
 removeAbandonedTimeout = 120
 removeAbandoned = true
 // use JMX console to change setting at runtimethis
 logAbandoned = // causes stacktrace recording overhead, use only debuggingfalse for
 // JDBC driver properties
 // Mysql as example
 dbProperties {
 // Mysql specific driver properties
 // http://dev.mysql.com/doc/connector-j/en/connector-j-reference-configuration-properties.html
 // let Tomcat JDBC Pool handle reconnecting
 autoReconnect=false
 // truncation behaviour
 jdbcCompliantTruncation=false
 // mysql 0-date conversion
 zeroDateTimeBehavior='convertToNull'
 // Tomcat JDBC Pool's StatementCache is used instead, so disable mysql driver's cache
 cachePrepStmts=false
 cacheCallableStmts=false
 // Tomcat JDBC Pool's StatementFinalizer keeps track
 dontTrackOpenResources=true
 // performance optimization: reduce number of SQLExceptions thrown in mysql driver code
 holdResultsOpenOverStatementClose=true
 // enable MySQL query cache - using server prep stmts will disable query caching
 useServerPrepStmts=false
 // metadata caching
 cacheServerConfiguration=true
 cacheResultSetMetadata=true
 metadataCacheSize=100
 // timeouts TCP/IPfor
 connectTimeout=15000
 socketTimeout=120000
 // timer tuning (disable)
 maintainTimeStats=false
 enableQueryTimeouts=false
 // misc tuning
 noDatetimeStringSync=true
 }
 }
}

53

More on dbCreate

Hibernate can automatically create the database tables required for your domain model. You have some control over when and how it does this through
the property, which can take these values:dbCreate

create - Drops the existing schema and creates the schema on startup, dropping existing tables, indexes, etc. first.

create-drop - Same as , but also drops the tables when the application shuts down cleanly.create

update - Creates missing tables and indexes, and updates the current schema without dropping any tables or data. Note that this can't properly handle
many schema changes like column renames (you're left with the old column containing the existing data).

validate - Makes no changes to your database. Compares the configuration with the existing database schema and reports warnings.

any other value - does nothing

You can also remove the setting completely, which is recommended once your schema is relatively stable and definitely when yourdbCreate
application and database are deployed in production. Database changes are then managed through proper migrations, either with SQL scripts or a
migration tool like (the plugin uses Liquibase and is tightly integrated with Grails and GORM). Liquibase Database Migration

4.4.1 DataSources and Environments
The previous example configuration assumes you want the same config for all environments: production, test, development etc.

Grails' DataSource definition is "environment aware", however, so you can do:

dataSource {
 pooled = true
 driverClassName = "com.mysql.jdbc.Driver"
 dialect = org.hibernate.dialect.MySQL5InnoDBDialect
 // other common settings here
}

environments {
 production {
 dataSource {
 url = "jdbc:mysql://liveip.com/liveDb"
 // other environment-specific settings here
 }
 }
}

4.4.2 Automatic Database Migration
The property of the definition is important as it dictates what Grails should do at runtime with regards to automaticallydbCreate DataSource
generating the database tables from classes. The options are described in the section:GORM DataSource

http://www.liquibase.org/
http://grails.org/plugin/database-migration

54

create

create-drop

update

validate

no value

In mode is by default set to "create-drop", but at some point in development (and certainly once you go to production) you'lldevelopment dbCreate
need to stop dropping and re-creating the database every time you start up your server.

It's tempting to switch to so you retain existing data and only update the schema when your code changes, but Hibernate's update support is veryupdate
conservative. It won't make any changes that could result in data loss, and doesn't detect renamed columns or tables, so you'll be left with the old one and
will also have the new one.

Grails supports migrations with Flyway or Liquibase using the . same mechanism provided by Spring Boot

4.4.3 Transaction-aware DataSource Proxy
The actual bean is wrapped in a transaction-aware proxy so you will be given the connection that's being used by the current transaction ordataSource
Hibernate if one is active.Session

If this were not the case, then retrieving a connection from the would be a new connection, and you wouldn't be able to see changes thatdataSource
haven't been committed yet (assuming you have a sensible transaction isolation setting, e.g. or better).READ_COMMITTED

The "real" unproxied is still available to you if you need access to it; its bean name is .dataSource dataSourceUnproxied

You can access this bean like any other Spring bean, i.e. using dependency injection:

class MyService {

def dataSourceUnproxied
 …
}

or by pulling it from the :ApplicationContext

def dataSourceUnproxied = ctx.dataSourceUnproxied

4.4.4 Database Console
The is a convenient feature of H2 that provides a web-based interface to any database that you have a JDBC driver for, and it's veryH2 database console
useful to view the database you're developing against. It's especially useful when running against an in-memory database.

http://docs.spring.io/spring-boot/docs/current/reference/html/howto-database-initialization.html
http://h2database.com/html/quickstart.html#h2_console

55

You can access the console by navigating to in a browser. The URI can be configured using the http://localhost:8080/dbconsole
 attribute in and defaults to .grails.dbconsole.urlRoot application.groovy '/dbconsole'

The console is enabled by default in development mode and can be disabled or enabled in other environments by using the
 attribute in . For example, you could enable the console in production like this:grails.dbconsole.enabled application.groovy

environments {
 production {
 grails.serverURL = "http://www.changeme.com"
 grails.dbconsole.enabled = true
 grails.dbconsole.urlRoot = '/admin/dbconsole'
 }
 development {
 grails.serverURL = "http://localhost:8080/${appName}"
 }
 test {
 grails.serverURL = "http://localhost:8080/${appName}"
 }
}

If you enable the console in production be sure to guard access to it using a trusted security framework.

Configuration

By default the console is configured for an H2 database which will work with the default settings if you haven't configured an external database - you just
need to change the JDBC URL to . If you've configured an external database (e.g. MySQL, Oracle, etc.) then you can use thejdbc:h2:mem:devDB
Saved Settings dropdown to choose a settings template and fill in the url and username/password information from your . application.groovy

4.4.5 Multiple Datasources
By default all domain classes share a single and a single database, but you have the option to partition your domain classes into two orDataSource
more s.DataSource

Configuring Additional DataSources

The default configuration in looks something like this:DataSource grails-app/conf/application.yml

56

dataSource:
 pooled: true
 jmxExport: true
 driverClassName: org.h2.Driver
 username: sa
 password:

environments:
 development:
 dataSource:
 dbCreate: create-drop
 url: jdbc:h2:mem:devDb;MVCC=TRUE;LOCK_TIMEOUT=10000;DB_CLOSE_ON_EXIT=FALSE
 test:
 dataSource:
 dbCreate: update
 url: jdbc:h2:mem:testDb;MVCC=TRUE;LOCK_TIMEOUT=10000;DB_CLOSE_ON_EXIT=FALSE
 production:
 dataSource:
 dbCreate: update
 url: jdbc:h2:prodDb;MVCC=TRUE;LOCK_TIMEOUT=10000;DB_CLOSE_ON_EXIT=FALSE
 properties:
 jmxEnabled: true
 initialSize: 5

This configures a single with the Spring bean named . To configure extra s, add a block (atDataSource dataSource DataSource dataSources
the top level, in an environment block, or both, just like the standard definition) with a custom name. For example, this configuration addsDataSource
a second , using MySQL in the development environment and Oracle in production:DataSource

57

dataSources:
 dataSource:
 pooled: true
 jmxExport: true
 driverClassName: org.h2.Driver
 username: sa
 password:
 lookup:
 dialect: org.hibernate.dialect.MySQLInnoDBDialect
 driverClassName: com.mysql.jdbc.Driver
 username: lookup
 password: secret
 url: jdbc:mysql://localhost/lookup
 dbCreate: update

environments:
 development:
 dataSources:
 dataSource:
 dbCreate: create-drop
 url: jdbc:h2:mem:devDb;MVCC=TRUE;LOCK_TIMEOUT=10000;DB_CLOSE_ON_EXIT=FALSE
 test:
 dataSources:
 dataSource:
 dbCreate: update
 url: jdbc:h2:mem:testDb;MVCC=TRUE;LOCK_TIMEOUT=10000;DB_CLOSE_ON_EXIT=FALSE
 production:
 dataSources:
 dataSource:
 dbCreate: update
 url: jdbc:h2:prodDb;MVCC=TRUE;LOCK_TIMEOUT=10000;DB_CLOSE_ON_EXIT=FALSE
 properties:
 jmxEnabled: true
 initialSize: 5
 …
 lookup:
 dialect: org.hibernate.dialect.Oracle10gDialect
 driverClassName: oracle.jdbc.driver.OracleDriver
 username: lookup
 password: secret
 url: jdbc:oracle:thin:@localhost:1521:lookup
 dbCreate: update

You can use the same or different databases as long as they're supported by Hibernate.

Configuring Domain Classes

If a domain class has no configuration, it defaults to the standard . Set the property in the DataSource 'dataSource' datasource mapping
block to configure a non-default . For example, if you want to use the domain to use the , configureDataSource ZipCode 'lookup' DataSource
it like this:

58

class ZipCode {

 codeString

 mapping = {static
 datasource 'lookup'
 }
}

A domain class can also use two or more s. Use the property with a list of names to configure more than one, for example:DataSource datasources

class ZipCode {

 codeString

 mapping = {static
 datasources(['lookup', 'auditing'])
 }
}

If a domain class uses the default and one or more others, use the special name to indicate the default :DataSource 'DEFAULT' DataSource

class ZipCode {

 codeString

 mapping = {static
 datasources(['lookup', 'DEFAULT'])
 }
}

If a domain class uses all configured s use the special value :DataSource 'ALL'

59

class ZipCode {

 codeString

 mapping = {static
 datasource 'ALL'
 }
}

Namespaces and GORM Methods

If a domain class uses more than one then you can use the namespace implied by each name to make GORM calls for aDataSource DataSource
particular . For example, consider this class which uses two s:DataSource DataSource

class ZipCode {

 codeString

 mapping = {static
 datasources(['lookup', 'auditing'])
 }
}

The first specified is the default when not using an explicit namespace, so in this case we default to 'lookup'. But you can call GORMDataSource
methods on the 'auditing' with the name, for example:DataSource DataSource

def zipCode = ZipCode.auditing.get(42)
…
zipCode.auditing.save()

As you can see, you add the to the method call in both the static case and the instance case.DataSource

Hibernate Mapped Domain Classes

You can also partition annotated Java classes into separate datasources. Classes using the default datasource are registered in
. To specify that an annotated class uses a non-default datasource, create a filegrails-app/conf/hibernate.cfg.xml hibernate.cfg.xml

for that datasource with the file name prefixed with the datasource name.

For example if the class is in the default datasource, you would register that in :Book grails-app/conf/hibernate.cfg.xml

60

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE hibernate-configuration PUBLIC
 '-//Hibernate/Hibernate Configuration DTD 3.0//EN'
 'http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd'>
<hibernate-configuration>
 <session-factory>
 <mapping class='org.example.Book'/>
 </session-factory>
</hibernate-configuration>

and if the class is in the "ds2" datasource, you would register that in :Library grails-app/conf/ds2_hibernate.cfg.xml

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE hibernate-configuration PUBLIC
 '-//Hibernate/Hibernate Configuration DTD 3.0//EN'
 'http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd'>
<hibernate-configuration>
 <session-factory>
 <mapping class='org.example.Library'/>
 </session-factory>
</hibernate-configuration>

The process is the same for classes mapped with hbm.xml files - just list them in the appropriate hibernate.cfg.xml file.

Services

Like Domain classes, by default Services use the default and . To configure a Service to use aDataSource PlatformTransactionManager
different , use the static property, for example:DataSource datasource

class DataService {

 datasource = 'lookup'static

void someMethod(...) {
 …
 }
}

A transactional service can only use a single , so be sure to only make changes for domain classes whose is the same as theDataSource DataSource
Service.

Note that the datasource specified in a service has no bearing on which datasources are used for domain classes; that's determined by their declared
datasources in the domain classes themselves. It's used to declare which transaction manager to use.

61

What you'll see is that if you have a Foo domain class in dataSource1 and a Bar domain class in dataSource2, and WahooService uses dataSource1, a
service method that saves a new Foo and a new Bar will only be transactional for Foo since they share the datasource. The transaction won't affect the Bar
instance. If you want both to be transactional you'd need to use two services and XA datasources for two-phase commit, e.g. with the Atomikos plugin.

Transactions across multiple datasources

Grails uses the Best Efforts 1PC pattern for handling transactions across multiple datasources.

The is fairly general but can fail in some circumstances that the developer must be aware of. This is a non-XA pattern thatBest Efforts 1PC pattern
involves a synchronized single-phase commit of a number of resources. Because the is not used, it can never be as safe as an transaction, but is2PC XA
often good enough if the participants are aware of the compromises.

The basic idea is to delay the commit of all resources as late as possible in a transaction so that the only thing that can go wrong is an infrastructure failure
(not a business-processing error). Systems that rely on Best Efforts 1PC reason that infrastructure failures are rare enough that they can afford to take the
risk in return for higher throughput. If business-processing services are also designed to be idempotent, then little can go wrong in practice.

The BE1PC implementation was added in Grails 2.3.6. . Before this change additional datasources didn't take part in transactions initiated in Grails. The
transactions in additional datasources were basically in auto commit mode. In some cases this might be the wanted behavior. One reason might be
performance: on the start of each new transaction, the BE1PC transaction manager creates a new transaction to each datasource. It's possible to leave an
additional datasource out of the BE1PC transaction manager by setting in the respective configuration block of thetransactional = false
additional dataSource. Datasources with will also be left out of the chained transaction manager (since 2.3.7).readOnly = true

By default, the BE1PC implementation will add all beans implementing the Spring interface to the chained BE1PCPlatformTransactionManager
transaction manager. For example, a possible bean in the Grails application context would be added to the Grails BE1PCJMSTransactionManager
transaction manager's chain of transaction managers.

You can exclude transaction manager beans from the BE1PC implementation with the this configuration option:

grails.transaction.chainedTransactionManagerPostProcessor.blacklistPattern = '.*'

The exclude matching is done on the name of the transaction manager bean. The transaction managers of datasources with transactional = false
or will be skipped and using this configuration option is not required in that case.readOnly = true

XA and Two-phase Commit

When the Best Efforts 1PC pattern isn't suitable for handling transactions across multiple transactional resources (not only datasources), there are several
options available for adding XA/2PC support to Grails applications.

The contains information about integrating the JTA/XA transaction manager of different application servers. In thisSpring transactions documentation
case, you can configure a bean with the name manually in or file.transactionManager resources.groovy resources.xml

There is also available for XA support in Grails applications. Atomikos plugin

4.5 Versioning

Detecting Versions at Runtime

You can detect the application version using Grails' support for application metadata using the class. For example within GrailsApplication controllers
there is an implicit variable that can be used:grailsApplication

http://www.javaworld.com/article/2077963/open-source-tools/distributed-transactions-in-spring--with-and-without-xa.html?page=2
https://en.wikipedia.org/wiki/Two-phase_commit
https://en.wikipedia.org/wiki/X/Open_XA
http://docs.spring.io/spring/docs/3.2.x/javadoc-api/org/springframework/transaction/PlatformTransactionManager.html
http://docs.spring.io/spring/docs/3.2.x/javadoc-api/org/springframework/jms/connection/JmsTransactionManager.html
http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/transaction.html#transaction-application-server-integration
http://grails.org/plugin/atomikos
http://grails.github.io/grails-doc/3.0.x/api/grails/core/GrailsApplication.html

62

def version = grailsApplication.metadata.getApplicationVersion()

You can retrieve the version of Grails that is running with:

def grailsVersion = grailsApplication.metadata.getGrailsVersion()

or the class:GrailsUtil

import grails.util.GrailsUtil
…
def grailsVersion = GrailsUtil.grailsVersion

4.6 Project Documentation
Since Grails 1.2, the documentation engine that powers the creation of this documentation has been available for your own Grails projects.

The documentation engine uses a variation on the syntax to automatically create project documentation with smart linking, formatting etc.Textile

Creating project documentation

To use the engine you need to follow a few conventions. First, you need to create a directory where your documentation source filessrc/docs/guide
will go. Then, you need to create the source docs themselves. Each chapter should have its own gdoc file as should all numbered sub-sections. You will
end up with something like:

+ src/docs/guide/introduction.gdoc
+ src/docs/guide/introduction/changes.gdoc
+ src/docs/guide/gettingStarted.gdoc
+ src/docs/guide/configuration.gdoc
+ src/docs/guide/configuration/build.gdoc
+ src/docs/guide/configuration/build/controllers.gdoc

http://txstyle.org/

63

Note that you can have all your gdoc files in the top-level directory if you want, but you can also put sub-sections in sub-directories named after the parent
section - as the above example shows.

Once you have your source files, you still need to tell the documentation engine what the structure of your user guide is going to be. To do that, you add a
 file that contains the structure and titles for each section. This file is in format and basically represents thesrc/docs/guide/toc.yml YAML

structure of the user guide in tree form. For example, the above files could be represented as:

introduction:
 title: Introduction
 changes: Change Log
gettingStarted: Getting Started
configuration:
 title: Configuration
 build:
 title: Build Config
 controllers: Specifying Controllers

The format is pretty straightforward. Any section that has sub-sections is represented with the corresponding filename (minus the .gdoc extension)
followed by a colon. The next line should contain plus the title of the section as seen by the end user. Every sub-section then has its own linetitle:
after the title. Leaf nodes, i.e. those without any sub-sections, declare their title on the same line as the section name but after the colon.

That's it. You can easily add, remove, and move sections within the to restructure the generated user guide. You should also make sure that alltoc.yml
section names, i.e. the gdoc filenames, should be unique since they are used for creating internal links and for the HTML filenames. Don't worry though,
the documentation engine will warn you of duplicate section names.

Creating reference items

Reference items appear in the Quick Reference section of the documentation. Each reference item belongs to a category and a category is a directory
located in the directory. For example, suppose you have defined a new controller method called . That belongs to the src/docs/ref renderPDF

 category so you would create a gdoc text file at the following location:Controllers

+ src/docs/ref/Controllers/renderPDF.gdoc

Configuring Output Properties

There are various properties you can set within your file that customize the output of thegrails-app/conf/application.groovy
documentation such as:

http://www.yaml.org/

64

grails.doc.title - The title of the documentation

grails.doc.subtitle - The subtitle of the documentation

grails.doc.authors - The authors of the documentation

grails.doc.license - The license of the software

grails.doc.copyright - The copyright message to display

grails.doc.footer - The footer to use

Other properties such as the version are pulled from your project itself. If a title is not specified, the application name is used.

You can also customise the look of the documentation and provide images by setting a few other options:

grails.doc.css - The location of a directory containing custom CSS files (type)java.io.File

grails.doc.js - The location of a directory containing custom JavaScript files (type)java.io.File

grails.doc.style - The location of a directory containing custom HTML templates for the guide (type)java.io.File

grails.doc.images - The location of a directory containing image files for use in the style templates and within the documentation pages themselves
(type)java.io.File

One of the simplest ways to customise the look of the generated guide is to provide a value for and then put a custom.css file in thegrails.doc.css
corresponding directory. Grails will automatically include this CSS file in the guide. You can also place a custom-pdf.css file in that directory. This allows
you to override the styles for the PDF version of the guide.

Generating Documentation

Add the plugin in your :build.gradle

apply plugin: "org.grails.grails-doc"

Once you have created some documentation (refer to the syntax guide in the next chapter) you can generate an HTML version of the documentation using
the command:

gradle docs

This command will output an which can be opened in a browser to view your documentation.docs/manual/index.html

Documentation Syntax

65

As mentioned the syntax is largely similar to Textile or Confluence style wiki markup. The following sections walk you through the syntax basics.

Basic Formatting

Monospace: monospace

@monospace@

Italic: italic

italic

Bold: bold

bold

Image:

!http://grails.org/images/new/grailslogo_topNav.png!

You can also link to internal images like so:

!someFolder/my_diagram.png!

This will link to an image stored locally within your project. There is currently no default location for doc images, but you can specify one with the
 setting in application.groovy like so:grails.doc.images

66

grails.doc.images = File()new "src/docs/images"

In this example, you would put the my_diagram.png file in the directory 'src/docs/images/someFolder'.

Linking

There are several ways to create links with the documentation generator. A basic external link can either be defined using confluence or textile style
markup:

[Pivotal|http://www.pivotal.io/oss]

or

"Pivotal":http://www.pivotal.io/oss

For links to other sections inside the user guide you can use the prefix with the name of the section you want to link to:guide:

[Intro|guide:introduction]

The section name comes from the corresponding gdoc filename. The documentation engine will warn you if any links to sections in your guide break.

To link to reference items you can use a special syntax:

[renderPDF|controllers]

In this case the category of the reference item is on the right hand side of the | and the name of the reference item on the left.

67

Finally, to link to external APIs you can use the prefix. For example:api:

[|api:java.lang.]String String

The documentation engine will automatically create the appropriate javadoc link in this case. To add additional APIs to the engine you can configure them
in . For example:grails-app/conf/application.groovy

grails.doc.api.org.hibernate=
 "http://docs.jboss.org/hibernate/stable/core/javadocs"

The above example configures classes within the package to link to the Hibernate website's API docs.org.hibernate

Lists and Headings

Headings can be created by specifying the letter 'h' followed by a number and then a dot:

h3.<space>Heading3
h4.<space>Heading4

Unordered lists are defined with the use of the * character:

* item 1
** subitem 1
** subitem 2
* item 2

Numbered lists can be defined with the # character:

68

item 1

Tables can be created using the macro:table

Name Number

Albert 46

Wilma 1348

James 12

{table}
 Name | * *Number
 Albert | 46
 Wilma | 1348
 James | 12
{table}

Code and Notes

You can define code blocks with the macro:code

class Book {
 titleString
}

{code}
class Book {
 titleString
}
{code}

69

The example above provides syntax highlighting for Java and Groovy code, but you can also highlight XML markup:

<hello>world</hello>

{code:xml}
<hello>world</hello>
{code}

There are also a couple of macros for displaying notes and warnings:

Note:

This is a note!

{note}
This is a note!
{note}

Warning:

This is a warning!

{warning}
This is a warning!
{warning}

4.7 Dependency Resolution

70

Dependency resolution is handled by the , all dependencies are defined in the file. Refer to the forGradle build tool build.gradle Gradle user guide
more information.

http://gradle.org
https://www.gradle.org/documentation

71

5 The Command Line
Grails 3.0's command line system differs greatly from previous versions of Grails and features APIs for invoking Gradle for build related tasks, as well as
performing code generation.

When you type:

grails [command name]

Grails searches the based on the profile of the current application. If the profile is for a web application then commands are read fromprofile repository
the web profile and the base profile which it inherits from.

Since command behavior is profile specific the web profile may provide different behavior for the command then say a profile for runningrun-app
batch applications.

When you type the following command:

grails run-app

It results in a search for the following files:

PROJECT_HOME/scripts/RunApp.groovy

PROFILE_REPOSITORY_PATH/profiles/web/commands/run-app.groovy (if the web profile is active)

PROFILE_REPOSITORY_PATH/profiles/web/commands/run-app.yml (for YAML defined commands)

To get a list of all commands and some help about the available commands type:

grails help

which outputs usage instructions and the list of commands Grails is aware of:

https://github.com/grails/grails-profile-repository

72

grails [environment]* [target] [arguments]*'

| Examples:
$ grails dev run-app
$ grails create-app books

| Available Commands (type grails help 'command-name' more info):for
Command Name Command Description
clean Cleans a Grails application's compiled sources
compile Compiles a Grails application
...

Refer to the Command Line reference in the Quick Reference menu of the reference guide for more information about
individual commands

non-interactive mode

When you run a script manually and it prompts you for information, you can answer the questions and continue running the script. But when you run a
script as part of an automated process, for example a continuous integration build server, there's no way to "answer" the questions. So you can pass the

 switch to the script command to tell Grails to accept the default answer for any questions, for example whether to install a--non-interactive
missing plugin.

For example:

grails war --non-interactive

5.1 Interactive Mode
Interactive mode is the a feature of the Grails command line which keeps the JVM running and allows for quicker execution of commands. To activate
interactive mode type 'grails' at the command line and then use TAB completion to get a list of commands:

73

If you need to open a file whilst within interactive mode you can use the command which will TAB complete file paths:open

74

Even better, the command understands the logical aliases 'test-report' and 'dep-report', which will open the most recent test and dependency reportsopen
respectively. In other words, to open the test report in a browser simply execute . You can even open multiple files at once: open test-report open

 will open the HTML test report in your browser and the source file in yourtest-report test/unit/MyTests.groovy MyTests.groovy
text editor.

TAB completion also works for class names after the commands:create-*

If you need to run an external process whilst interactive mode is running you can do so by starting the command with a !:

75

Note that with ! (bang) commands, you get file path auto completion - ideal for external commands that operate on the file system such as 'ls', 'cat', 'git',
etc.

To exit interactive mode enter the command. Note that if the Grails application has been run with normally it will terminate when theexit run-app
interactive mode console exits because the JVM will be terminated. An exception to this would be if the application were running in forked mode which
means the application is running in a different JVM. In that case the application will be left running after the interactive mode console terminates. If you
want to exit interactive mode and stop an application that is running in forked mode, use the command. The command will stop the runningquit quit
application and then close interactive mode.

5.2 Creating Custom Scripts
You can create your own Command scripts by running the command from the root of your project. For example the following command willcreate-script
create a script called :src/main/scripts/hello-world.groovy

grails create-script hello-world

In general Grails scripts should be used for scripting the Gradle based build system and code generation. Scripts cannot
load application classes and in fact should not since Gradle is required to construct the application classpath.

See below for an example script that prints 'Hello World':

76

description , "Example description" "grails hello-world"

println "Hello World"

The method is used to define the output seen by and to aid users of the script. The following is a more completedescription grails help
example of providing a description taken from the command:generate-all

description() {"Generates a controller that performs CRUD operations and the associated views"
 usage "grails generate-all [DOMAIN CLASS]"
 flag name:'force', description:"Whether to overwrite existing files"
 argument name:'Domain ', description:'The name of the domain class'Class
}

As you can see this description profiles usage instructions, a flag and an argument. This allows the command to be used as follows:

grails generate-all MyClass --force

5.3 Re-using Grails scripts
Grails ships with a lot of command line functionality out of the box that you may find useful in your own scripts (See the command line reference in the
reference guide for info on all the commands).

Any script you create can invoke another Grails script simply by invoking a method:

testApp()

The above will invoke the command. You can also pass arguments using the method arguments:test-app

77

testApp('--debug-jvm')

Invoking Gradle

Instead of invoking another Grails CLI command you can invoke Gradle directory using the property.gradle

gradle.compileGroovy()

Invoking Ant

You can also invoke Ant tasks from scripts which can help if you need to writing code generation and automation tasks:

ant.mkdir(dir:)"path"

Template Generation

Plugins and applications that need to define template generation tasks can do so using scripts. A example of this is the Scaffolding plugin which defines
the and commands.generate-all generate-controllers

Every Grails script implements the interface which makes it trivial to render templates to the users project workspace.TemplateRenderer

The following is an example of the command written in Groovy:create-script

http://grails.github.io/grails-doc/3.0.x/api/org/grails/cli/profile/commands/templates/TemplateRenderer.html

78

description() {"Creates a Grails script"
 usage "grails create-script [SCRIPT NAME]"
 argument name:'Script Name', description:"The name of the script to create"
 flag name:'force', description:"Whether to overwrite existing files"
}

def scriptName = args[0]
def model = model(scriptName)
def overwrite = flag('force') ? : true false

render template: template('artifacts/Script.groovy'),
 destination: file(),"src/main/scripts/${model.lowerCaseName}.groovy"
 model: model,
 overwrite: overwrite

5.4 Building with Gradle
Grails 3.1 uses the for build related tasks such as compilation, runnings tests and producing binary distrubutions of your project. It isGradle Build System
recommended to use Gradle 2.2 or above with Grails 3.1.

The build is defined by the file which specifies the version of your project, the dependencies of the project and the repositories where tobuild.gradle
find those dependencies (amongst other things).

When you invoke the command the version of Gradle that ships with Grails 3.1 (currently 2.9) is invoked by the process via the grails grails Gradle
:Tooling API

Equivalent to 'gradle classes'
$ grails compile

You can invoke Gradle directly using the command and use your own local version of Gradle, however you will need Gradle 2.2 or above togradle
work with Grails 3.0:

$ gradle assemble

5.4.1 Defining Dependencies with Gradle
Dependencies for your project are defined in the block. In general you can follow the dependencies Gradle documentation on dependency

 to understand how to configure additional dependencies.management

The default dependencies for the "web" profile can be seen below:

http://gradle.org
http://www.gradle.org/docs/current/userguide/embedding.html
http://www.gradle.org/docs/current/userguide/embedding.html
http://www.gradle.org/docs/current/userguide/artifact_dependencies_tutorial.html
http://www.gradle.org/docs/current/userguide/artifact_dependencies_tutorial.html

79

dependencies {
 compile 'org.springframework.boot:spring-boot-starter-logging'
 compile('org.springframework.boot:spring-boot-starter-actuator')
 compile 'org.springframework.boot:spring-boot-autoconfigure'
 compile 'org.springframework.boot:spring-boot-starter-tomcat'
 compile 'org.grails:grails-dependencies'
 compile 'org.grails:grails-web-boot'

compile 'org.grails.plugins:hibernate'
 compile 'org.grails.plugins:cache'
 compile 'org.hibernate:hibernate-ehcache'

runtime 'org.grails.plugins:asset-pipeline'
 runtime 'org.grails.plugins:scaffolding'

testCompile 'org.grails:grails-plugin-testing'
 testCompile 'org.grails.plugins:geb'

// Note: It is recommended to update to a more robust driver (Chrome, Firefox etc.)
 testRuntime 'org.seleniumhq.selenium:selenium-htmlunit-driver:2.44.0'

console 'org.grails:grails-console'
}

Note that version numbers are not present in the majority of the dependencies. This is thanks to the dependency management plugin which configures a
Maven BOM that defines the default dependency versions for certain commonly used dependencies and plugins:

dependencyManagement {
 imports {
 mavenBom 'org.grails:grails-bom:' + grailsVersion
 }
 applyMavenExclusions false
}

5.4.2 Working with Gradle Tasks
As mentioned previously the command uses an embedded version of Gradle and certain Grails commands that existed in previous versions ofgrails
Grails map onto their Gradle equivalents. The following table shows which Grails command invoke which Gradle task:

80

Grails Command Gradle Task

clean clean

compile classes

package assemble

run-app bootRun

test-app test

test-app --integration integrationTest

war assemble

You can invoke any of these Grails commands using their Gradle equivalents if you prefer:

$ gradle test

Note however that you will need to use a version of Gradle compatible with Grails 3.1 (Gradle 2.2 or above). If you wish to invoke a Gradle task using the
version of Gradle used by Grails you can do so with the command:grails

$ grails gradle compileGroovy

However, it is recommended you do this via interactive mode, as it greatly speeds up execution and provides TAB completion for the available Gradle
tasks:

$ grails
| Enter a command name to run. Use TAB completion:for
 grails> gradle compileGroovy
 ...

To find out what Gradle tasks are available without using interactive mode TAB completion you can use the Gradle task:tasks

81

gradle tasks

5.4.3 Grails plugins for Gradle
When you create a new project with the command, a default is created. The default configures the buildcreate-app build.gradle build.gradle
with a set of Gradle plugins that allow Gradle to build the Grails project:

apply plugin:"war"
apply plugin:"org.grails.grails-web"
apply plugin:"org.grails.grails-gsp"
apply plugin:"asset-pipeline"

The default plugins are as follows:

war - The changes the packaging so that Gradle creates as WAR file from you application. You can comment out this plugin if youWAR plugin
wish to create only a runnable JAR file for standalone deployment.

asset-pipeline - The plugin enables the compilation of static assets (JavaScript, CSS etc.)asset pipeline

Many of these are built in plugins provided by Gradle or third party plugins. The Gradle plugins that Grails provides are as follows:

org.grails.grails-core - The primary Grails plugin for Gradle, included by all other plugins and designed to operate with all profiles.

org.grails.grails-gsp - The Grails GSP plugin adds precompilation of GSP files for production deployments.

org.grails.grails-doc - A plugin for Gradle for using Grails 2.0's documentation engine.

org.grails.grails-plugin - A plugin for Gradle for building Grails plugins.

org.grails.grails-plugin-publish - A plugin for publishing Grails plugins to the central repository.

org.grails.grails-profile - A plugin for use when creating Grails .Profiles

org.grails.grails-profile-publish - A plugin for publishing Grails profiles to the central repository.

org.grails.grails-web - The Grails Web gradle plugin configures Gradle to understand the Grails conventions and directory structure.

http://www.gradle.org/docs/current/userguide/war_plugin.html
https://github.com/bertramdev/asset-pipeline-core

82

6 Application Profiles
When you create a Grails application with the command by default the "web" profile is used:create-app

grails create-app myapp

You can specify a different profile with the profile argument:

grails create-app myapp --profile= -apirest

Profiles encapsulate the project commands, templates and plugins that are designed to work for a given profile. The source for the profiles can be found
, whilst the profiles themselves are published as JAR files to the Grails central repository.on Github

To find out what profiles are available use the command:list-profiles

$ grails list-profiles

For more information on a particular profile use the command:profile-info

$ grails profile-info -apirest

Profile Repositories

By default Grails will resolve profiles from the . However, you can override what repositories will be searched by specifyingGrails central repository
repositories in the file.USER_HOME/grails/settings.groovy

If you want profiles to be resolved with a custom repository in addition to the Grails central repository, you must specify Grails central in the file as well:

https://github.com/grails/grails-profile-repository
https://repo.grails.org/grails/core/org/grails/profiles/

83

grails {
 profiles {
 repositories {
 myRepo {
 url = "http://foo.com/repo"
 snapshotsEnabled = true
 }
 grailsCentral {
 url = "https://repo.grails.org/grails/core"
 snapshotsEnabled = true
 }
 }
 }
}

Note that Grails uses Aether to resolve profiles, as a Gradle instance is not yet available when the commandcreate-app
is executed. This means that you can also define repositories and more advanced configuration (proxies, authentication
etc.) in your file if you wish.USER_HOME/.m2/settings.xml

Profile Defaults

To create an application that uses a custom profile, you must specify the full artifact.

$ grails create-app myapp --profile=com.mycompany.grails.profiles:myprofile:1.0.0

To make this process easier, you can define defaults for a given profile in the file.USER_HOME/grails/settings.groovy

grails {
 profiles {
 myprofile {
 groupId = "com.mycompany.grails.profiles"
 version = "1.0.0"
 }
 repositories {
 …
 }
 }
}

With the default values specified, the command to create an application using that profile becomes:

84

$ grails create-app myapp --profile=myprofile

6.1 Creating Profiles
The idea behind creating a new profile is that you can setup a default set of commands and plugins that are tailored to a particular technology or
organisation.

To create a new profile you can use the command which will create a new empty profile that extends the base profile:create-profile

$ grails create-profile mycompany

The above command will create a new profile in the "mycompany" directory where the command is executed. If you start interactive mode within the
directory you will get a set of commands for creating profiles:

$ cd mycompany
$ grails
| Enter a command name to run. Use TAB completion:for
grails>

create-command create-creator-command create-feature create-generator-command
create-gradle-command create-template

The commands are as follows:

create-command - creates a new command that will be available from the Grails CLI when the profile is used

create-creator-command - creates a command available to the CLI that renders a template (Example: create-controller)

create-generator-command - creates a command available to the CLI that renders a template based on a domain class (Example:
generate-controller)

create-feature - creates a feature that can be used with this profile

create-gradle-command - creates a CLI command that can invoke gradle

create-template - creates a template that can be rendered by a command

To customize the dependencies for your profile you can specify additional dependencies in .profile.yml

Below is an example file:profile.yml

85

features:
 defaults:
 - hibernate
 - asset-pipeline
build:
 plugins:
 - org.grails.grails-web
 excludes:
 - org.grails.grails-core
dependencies:
 compile:
 - "org.mycompany:myplugin:1.0.1"

With the above configuration in place you can publish the profile to your local repository with :gradle install

$ gradle install

Your profile is now usable with the command:create-app

$ grails create-app myapp --profile mycompany

With the above command the application will be created with the "mycompany" profile which includes an additinal dependency on the "myplugin" plugin
and also includes the "hibernate" and "asset-pipeline" features (more on features later).

Note that if you customize the dependency coordinates of the profile (group, version etc.) then you may need to use the fully qualified coordinates to
create an application:

$ grails create-app myapp --profile com.mycompany:mycompany:1.0.1

6.2 Profile Inheritance
One profile can extend one or many different parent profiles. To define profile inheritance you can modify the of a profile and definebuild.gradle
the profile dependences. For example typically you want to extend the profile:base

86

dependencies {
 runtime project(':base')
}

By inheriting from a parent profile you get the following benefits:

When the command is executed the parent profile's skeleton is copied firstcreate-app

Dependencies and is merged from the parent(s)build.gradle

The file is merged from the parent(s)application.yml

CLI commands from the parent profile are inherited

Features from the parent profile are inherited

To define the order of inheritance ensure that your dependencies are declared in the correct order. For example:

dependencies {
 runtime project(':plugin')
 runtime project(':web')
}

In the above snippet the skeleton from the "plugin" profile is copied first, followed by the "web" profile. In addition, the "web" profile overrides
commands from the "plugin" profile, whilst if the dependency order was reversed the "plugin" profile would override the "web" profile.

6.3 Publishing Profiles

Publishing Profiles to the Grails Central Repository

Any profile created with the command already comes configured with a plugin defined in create-profile grails-profile-publish
:build.gradle

apply plugin: "org.grails.grails-profile-publish"

To publish a profile using this plugin to the Grails central repository first upload the source to (closed source profiles will not be accepted). ThenGithub
register for an account on and configure your keys as follows in the profile's file:Bintray build.gradle

https://github.com
https://bintray.com

87

grailsPublish {
 user = 'YOUR USERNAME'
 key = 'YOUR KEY'
 githubSlug = 'your-repo/your-profile'
 license = 'Apache-2.0'
}

The argument should point to the path to your Github repository. For example if your repository is locatedgithubSlug
at then your is https://github.com/foo/bar githubSlug foo/bar

With this in place you can run to publish your profile:gradle publishProfile

$ gradle publishProfile

The profile will be uploaded to Bintray. You can then go the the and request to have your profile included by clicking "IncludeGrails profiles repository
My Package" button on Bintray's interface (you must be logged in to see this).

Publishing Profiles to an Internal Repository

The aforementioned plugin configures . In order to publish to an internal repository allgrails-profile-publish Gradle's Maven Publish plugin
you need to do is define the repository in . For example:build.gradle

publishing {
 repositories {
 maven {
 credentials {
 username "foo"
 password "bar"
 }

url "http://foo.com/repo"
 }
 }
}

Once configured you can publish your plugin with :gradle publish

https://bintray.com/grails/profiles
https://docs.gradle.org/current/userguide/publishing_maven.html

88

$ gradle publish

6.4 Understanding Profiles
A profile is a simple directory that contains a file and directories containing the "commands", "skeleton" and "templates" defined by theprofile.yml
profile. Example:

web
 * commands
 * create-controller.yml
 * run-app.groovy
 …
 * features
 * asset-pipeline
 * skeleton
 * feature.yml
 * skeleton
 * grails-app
 * controllers
 …
 * build.gradle
 * templates
 * artifacts
 * Controller.groovy
 * profile.yml

The above example is a snippet of structure of the 'web' profile. The file is used to describe the profile and control how a the build isprofile.yml
configured.

Understanding the profile.yml descriptor

The can contain the following child elements.profile.yml

1) repositories

A list of Maven repositories to include in the generated build. Example:

repositories:
 - "https://repo.grails.org/grails/core"

89

2) build.repositories

A list of Maven repositories to include in the buildscript section of the generated build. Example:

build:
 repositories:
 - "https://repo.grails.org/grails/core"

3) build.plugins

A list of Gradle plugins to configure in the generated build. Example:

build:
 plugins:
 - eclipse
 - idea
 - org.grails.grails-core

4) build.excludes

A list of Gradle plugins to exclude from being inherited from the parent profile:

build:
 excludes:
 - org.grails.grails-core

5) dependencies

A map of scopes and dependencies to configure. The scope can be used to exclude from the parent profile. Example:excludes

90

dependencies:
 excludes:
 - "org.grails:hibernate"
 build:
 - "org.grails:grails-gradle-plugin:$grailsVersion"
 compile:
 - "org.springframework.boot:spring-boot-starter-logging"
 - "org.springframework.boot:spring-boot-autoconfigure"

6) features.defaults

A default list of features to use if no explicit features are specified.

features:
 defaults:
 - hibernate
 - asset-pipeline

What happens when a profile is used?

When the command runs it takes the skeleton of the parent profiles and copies the skeletons into a new project structure.create-app

The file is generated as is result of obtaining all of the dependency information defined in the files and produces thebuild.gradle profile.yml
required dependencies.

The command will also merge any files defined within a profile and its parent profiles.build.gradle

The file is also merged into a a single YAML file taking into account the profile and all of the parentgrails-app/conf/application.yml
profiles.

6.5 Creating Profile Commands
A profile can define new commands that apply only to that profile using YAML or Groovy scripts. Below is an example of the commandcreate-controller
defined in YAML:

91

description:
 - Creates a controller
 - usage: 'create-controller [controller name]'
 - completer: org.grails.cli.interactive.completers.DomainClassCompleter
 - argument: "Controller Name"
 description: "The name of the controller"
steps:
 - command: render
 template: templates/artifacts/Controller.groovy
 destination: grails-app/controllers/ / Controller.groovyartifact. .pathpackage artifact.name
 - command: render
 template: templates/testing/Controller.groovy
 destination: src/test/groovy/ / ControllerSpec.groovyartifact. .pathpackage artifact.name
 - command: mkdir
 location: grails-app/views/artifact.propertyName

Commands defined in YAML must define one or many steps. Each step is a command in itself. The available step types are:

render - To render a template to a given destination (as seen in the previous example)

mkdir - To make a directory specified by the parameterlocation

execute - To execute a command specified by the parameter. Must be a class that implements the interface.class Command

gradle - To execute one or many Gradle tasks specified by the parameter.tasks

For example to invoke a Gradle task, you can define the following YAML:

description: Creates a WAR file deployment to a container (like Tomcat)for
minArguments: 0
usage: |
 war
steps:
 - command: gradle
 tasks:
 - war

If you need more flexiblity than what the declarative YAML approach provides you can create Groovy script commands. Each Command script is extends
from the class and hence has all of the methods of that class available to it.GroovyScriptCommmand

The following is an example of the command written in Groovy:create-script

http://grails.github.io/grails-doc/3.0.x/api/org/grails/cli/profile/Command.html
http://grails.github.io/grails-doc/3.0.x/api/org/grails/cli/profile/commands/script/GroovyScriptCommmand.html

92

description() {"Creates a Grails script"
 usage "grails create-script [SCRIPT NAME]"
 argument name:'Script Name', description:"The name of the script to create"
 flag name:'force', description:"Whether to overwrite existing files"
}

def scriptName = args[0]
def model = model(scriptName)
def overwrite = flag('force') ? : true false

render template: template('artifacts/Script.groovy'),
 destination: file(),"src/main/scripts/${model.lowerCaseName}.groovy"
 model: model,
 overwrite: overwrite

For more information on creating CLI commands see the section on in the Command Line section of the user guide.Creating custom scripts

6.6 Creating Profile Features
A Profile feature is a shareable set of templates and dependencies that may span multiple profiles. Typically you create a base profile that has multiple
features and child profiles that inherit from the parent and hence can use the features available from the parent.

To create a feature use the command from the root directory of your profile:create-feature

$ grails create-feature myfeature

This will create a file that looks like the following:myfeature/feature.yml

description: Description of the feature
customize versions here
dependencies:
compile:
- "org.grails.plugins:myplugin2:1.0"
#

As a more concrete example. The following is the file from the "asset-pipeline" feature:feature.yml

93

description: Adds Asset Pipeline to a Grails project
build:
 plugins:
 - asset-pipeline
dependencies:
 build:
 - 'com.bertramlabs.plugins:asset-pipeline-gradle:2.5.0'
 runtime:
 - "org.grails.plugins:asset-pipeline"

The structure of a feature is as follows:

FEATURE_DIR
 * feature.yml
 * skeleton
 * grails-app
 * conf
 * application.yml
 * build.gradle

The contents of the skeleton get copied into the application tree, whilst the and get merged with their respectiveapplication.yml build.gradle
counterparts in the profile by used.

With the you can define additional dependencies. This allows users to create applications with optional features. For example:feature.yml

$ grails create-app myapp --profile myprofile --features myfeature,hibernate

The above example will create a new application using your new feature and the "hibernate" feature.

94

7 Object Relational Mapping (GORM)
Domain classes are core to any business application. They hold state about business processes and hopefully also implement behavior. They are linked
together through relationships; one-to-one, one-to-many, or many-to-many.

GORM is Grails' object relational mapping (ORM) implementation. Under the hood it uses Hibernate 3 (a very popular and flexible open source ORM
solution) and thanks to the dynamic nature of Groovy with its static and dynamic typing, along with the convention of Grails, there is far less
configuration involved in creating Grails domain classes.

You can also write Grails domain classes in Java. See the section on Hibernate Integration for how to write domain classes in Java but still use dynamic
persistent methods. Below is a preview of GORM in action:

def book = Book.findByTitle()"Groovy in Action"

book
 .addToAuthors(name:)"Dierk Koenig"
 .addToAuthors(name:)"Guillaume LaForge"
 .save()

7.1 Quick Start Guide
A domain class can be created with the command:create-domain-class

grails create-domain-class helloworld.Person

If no package is specified with the create-domain-class script, Grails automatically uses the application name as the
package name.

This will create a class at the location such as the one below:grails-app/domain/helloworld/Person.groovy

package helloworld

class Person {
}

95

If you have the property set to "update", "create" or "create-drop" on your , Grails willdbCreate DataSource
automatically generate/modify the database tables for you.

You can customize the class by adding properties:

class Person {
 nameString
 ageInteger
 Date lastVisit
}

Once you have a domain class try and manipulate it with the or by typing:shell console

grails console

This loads an interactive GUI where you can run Groovy commands with access to the Spring ApplicationContext, GORM, etc.

7.1.1 Basic CRUD
Try performing some basic CRUD (Create/Read/Update/Delete) operations.

Create

To create a domain class use Map constructor to set its properties and call :save

def p = Person(name: , age: 40, lastVisit: Date())new "Fred" new
p.save()

The method will persist your class to the database using the underlying Hibernate ORM layer.save

Read

Grails transparently adds an implicit property to your domain class which you can use for retrieval:id

96

def p = Person.get(1)
assert 1 == p.id

This uses the method that expects a database identifier to read the object back from the database. You can also load an object in a read-onlyget Person
state by using the method:read

def p = Person.read(1)

In this case the underlying Hibernate engine will not do any dirty checking and the object will not be persisted. Note that if you explicitly call the save
method then the object is placed back into a read-write state.

In addition, you can also load a proxy for an instance by using the method:load

def p = Person.load(1)

This incurs no database access until a method other than getId() is called. Hibernate then initializes the proxied instance, or throws an exception if no
record is found for the specified id.

Update

To update an instance, change some properties and then call again:save

def p = Person.get(1)
p.name = "Bob"
p.save()

Delete

To delete an instance use the method:delete

97

def p = Person.get(1)
p.delete()

7.2 Domain Modelling in GORM
When building Grails applications you have to consider the problem domain you are trying to solve. For example if you were building an -styleAmazon
bookstore you would be thinking about books, authors, customers and publishers to name a few.

These are modeled in GORM as Groovy classes, so a class may have a title, a release date, an ISBN number and so on. The next few sections showBook
how to model the domain in GORM.

To create a domain class you run the command as follows:create-domain-class

grails create-domain-class org.bookstore.Book

The result will be a class at :grails-app/domain/org/bookstore/Book.groovy

package org.bookstore

class Book {
}

This class will map automatically to a table in the database called (the same name as the class). This behaviour is customizable through the book ORM
Domain Specific Language

Now that you have a domain class you can define its properties as Java types. For example:

package org.bookstore

class Book {
 titleString
 Date releaseDate
 ISBNString
}

http://www.amazon.com/

98

Each property is mapped to a column in the database, where the convention for column names is all lower case separated by underscores. For example
 maps onto a column . The SQL types are auto-detected from the Java types, but can be customized with orreleaseDate release_date Constraints

the . ORM DSL

7.2.1 Association in GORM
Relationships define how domain classes interact with each other. Unless specified explicitly at both ends, a relationship exists only in the direction it is
defined.

7.2.1.1 Many-to-one and one-to-one
A many-to-one relationship is the simplest kind, and is defined with a property of the type of another domain class. Consider this example:

Example A

class Face {
 Nose nose
}

class Nose {
}

In this case we have a unidirectional many-to-one relationship from to . To make this relationship bidirectional define the other side asFace Nose
follows (and see the section on controlling the ends of the association just below):

Example B

class Face {
 Nose nose
}

99

class Nose {
 belongsTo = [face:Face]static
}

In this case we use the setting to say that "belongs to" . The result of this is that we can create a , attach a instancebelongsTo Nose Face Face Nose
to it and when we save or delete the instance, GORM will save or delete the . In other words, saves and deletes will cascade from to theFace Nose Face
associated :Nose

new Face(nose: Nose()).save()new

The example above will save both face and nose. Note that the inverse true and will result in an error due to a transient :is not Face

new Nose(face: Face()).save() // will cause an errornew

Now if we delete the instance, the will go too:Face Nose

def f = Face.get(1)
f.delete() // both Face and Nose deleted

To make the relationship a true one-to-one, use the property on the owning side, e.g. :hasOne Face

Example C

class Face {
 hasOne = [nose:Nose]static
}

100

class Nose {
 Face face
}

Note that using this property puts the foreign key on the inverse table to the example A, so in this case the foreign key column is stored in the tablenose
inside a column called . Also, only works with bidirectional relationships.face_id hasOne

Finally, it's a good idea to add a unique constraint on one side of the one-to-one relationship:

class Face {
 hasOne = [nose:Nose]static

 constraints = {static
 nose unique: true
 }
}

class Nose {
 Face face
}

Controlling the ends of the association

Occasionally you may find yourself with domain classes that have multiple properties of the same type. They may even be self-referential, i.e. the
association property has the same type as the domain class it's in. Such situations can cause problems because Grails may guess incorrectly the type of the
association. Consider this simple class:

class Person {
 nameString
 Person parent

 belongsTo = [supervisor: Person]static

 constraints = { supervisor nullable: }static true
}

101

As far as Grails is concerned, the and properties are two directions of the same association. So when you set the parent supervisor parent
property on a instance, Grails will automatically set the property on the other instance. This may be what you want, butPerson supervisor Person
if you look at the class, what we in fact have are two unidirectional relationships.

To guide Grails to the correct mapping, you can tell it that a particular association is unidirectional through the property:mappedBy

class Person {
 nameString
 Person parent

 belongsTo = [supervisor: Person]static

 mappedBy = [supervisor: , parent:]static "none" "none"

 constraints = { supervisor nullable: }static true
}

You can also replace "none" with any property name of the target class. And of course this works for normal domain classes too, not just self-referential
ones. Nor is the property limited to many-to-one and one-to-one associations: it also works for one-to-many and many-to-many associationsmappedBy
as you'll see in the next section.

If you have a property called "none" on your domain class, this approach won't work currently! The "none" property will be
treated as the reverse direction of the association (or the "back reference"). Fortunately, "none" is not a common domain
class property name.

7.2.1.2 One-to-many
A one-to-many relationship is when one class, example , has many instances of another class, example . With Grails you define such aAuthor Book
relationship with the setting:hasMany

class Author {
 hasMany = [books: Book]static

 nameString
}

class Book {
 titleString
}

102

In this case we have a unidirectional one-to-many. Grails will, by default, map this kind of relationship with a join table.

The allows mapping unidirectional relationships using a foreign key association insteadORM DSL

Grails will automatically inject a property of type into the domain class based on the setting. This can be used to iteratejava.util.Set hasMany
over the collection:

def a = Author.get(1)

 (book in a.books) {for
 println book.title
}

The default fetch strategy used by Grails is "lazy", which means that the collection will be lazily initialized on first access.
This can lead to the if you are not careful.n+1 problem

If you need "eager" fetching you can use the or specify eager fetching as part of a ORM DSL query

The default cascading behaviour is to cascade saves and updates, but not deletes unless a is also specified:belongsTo

class Author {
 hasMany = [books: Book]static

 nameString
}

class Book {
 belongsTo = [author: Author]static
 titleString
}

If you have two properties of the same type on the many side of a one-to-many you have to use to specify which the collection is mapped:mappedBy

http://www.javalobby.org/java/forums/t20533.html

103

class Airport {
 hasMany = [flights: Flight]static
 mappedBy = [flights:]static "departureAirport"
}

class Flight {
 Airport departureAirport
 Airport destinationAirport
}

This is also true if you have multiple collections that map to different properties on the many side:

class Airport {
 hasMany = [outboundFlights: Flight, inboundFlights: Flight]static
 mappedBy = [outboundFlights: ,static "departureAirport"
 inboundFlights:]"destinationAirport"
}

class Flight {
 Airport departureAirport
 Airport destinationAirport
}

7.2.1.3 Many-to-many
Grails supports many-to-many relationships by defining a on both sides of the relationship and having a on the owned side of thehasMany belongsTo
relationship:

104

class Book {
 belongsTo = Authorstatic
 hasMany = [authors:Author]static
 titleString
}

class Author {
 hasMany = [books:Book]static
 nameString
}

Grails maps a many-to-many using a join table at the database level. The owning side of the relationship, in this case , takes responsibility forAuthor
persisting the relationship and is the only side that can cascade saves across.

For example this will work and cascade saves:

new Author(name:)"Stephen King"
 .addToBooks(Book(title:))new "The Stand"
 .addToBooks(Book(title:))new "The Shining"
 .save()

However this will only save the and not the authors!Book

new Book(name:)"Groovy in Action"
 .addToAuthors(Author(name:))new "Dierk Koenig"
 .addToAuthors(Author(name:))new "Guillaume Laforge"
 .save()

This is the expected behaviour as, just like Hibernate, only one side of a many-to-many can take responsibility for managing the relationship.

Grails' feature currently support many-to-many relationship and hence you must write the code toScaffolding does not
manage the relationship yourself

105

7.2.1.4 Basic Collection Types
As well as associations between different domain classes, GORM also supports mapping of basic collection types. For example, the following class
creates a association that is a of instances:nicknames Set String

class Person {
 hasMany = [nicknames:]static String
}

GORM will map an association like the above using a join table. You can alter various aspects of how the join table is mapped using the joinTable
argument:

class Person {

 hasMany = [nicknames:]static String

 mapping = {static
 nicknames joinTable: [name: 'bunch_o_nicknames',
 key: 'person_id',
 column: 'nickname',
 type:]"text"
 }
}

The example above will map to a table that looks like the following:

bunch_o_nicknames Table

| person_id | nickname |

| 1 | Fred |

7.2.2 Composition in GORM
As well as , Grails supports the notion of composition. In this case instead of mapping classes onto separate tables a class can be "embedded"association
within the current table. For example:

106

class Person {
 Address homeAddress
 Address workAddress
 embedded = ['homeAddress', 'workAddress']static
}

class Address {
 numberString
 codeString
}

The resulting mapping would looking like this:

If you define the class in a separate Groovy file in the directory you will also get an Address grails-app/domain
 table. If you don't want this to happen use Groovy's ability to define multiple classes per file and include the address
 class below the class in the fileAddress Person grails-app/domain/Person.groovy

7.2.3 Inheritance in GORM
GORM supports inheritance both from abstract base classes and concrete persistent GORM entities. For example:

class Content {
 authorString
}

class BlogEntry Content {extends
 URL url
}

107

class Book Content {extends
 ISBNString
}

class PodCast Content {extends
 [] audioStreambyte
}

In the above example we have a parent class and then various child classes with more specific behaviour.Content

Considerations

At the database level Grails by default uses table-per-hierarchy mapping with a discriminator column called so the parent class () andclass Content
its subclasses (, etc.), share the table.BlogEntry Book same

Table-per-hierarchy mapping has a down side in that you have non-nullable properties with inheritance mapping. An alternative is to usecannot
table-per-subclass which can be enabled with the ORM DSL

However, excessive use of inheritance and table-per-subclass can result in poor query performance due to the use of outer join queries. In general our
advice is if you're going to use inheritance, don't abuse it and don't make your inheritance hierarchy too deep.

Polymorphic Queries

The upshot of inheritance is that you get the ability to polymorphically query. For example using the method on the super class will returnlist Content
all subclasses of :Content

def content = Content.list() // list all blog entries, books and podcasts
content = Content.findAllByAuthor('Joe Bloggs') // find all by author

def podCasts = PodCast.list() // list only podcasts

7.2.4 Sets, Lists and Maps

Sets of Objects

By default when you define a relationship with GORM it is a which is an unordered collection that cannot contain duplicates. In otherjava.util.Set
words when you have:

108

class Author {
 hasMany = [books: Book]static
}

The books property that GORM injects is a . Sets guarantee uniqueness but not order, which may not be what you want. To havejava.util.Set
custom ordering you configure the Set as a :SortedSet

class Author {

SortedSet books

 hasMany = [books: Book]static
}

In this case a implementation is used which means you must implement in your Book class:java.util.SortedSet java.lang.Comparable

class Book Comparable {implements

 titleString
 Date releaseDate = Date()new

 compareTo(obj) {int
 releaseDate.compareTo(obj.releaseDate)
 }
}

The result of the above class is that the Book instances in the books collection of the Author class will be ordered by their release date.

Lists of Objects

To keep objects in the order which they were added and to be able to reference them by index like an array you can define your collection type as a :List

109

class Author {

List books

 hasMany = [books: Book]static
}

In this case when you add new elements to the books collection the order is retained in a sequential list indexed from 0 so you can do:

author.books[0] // get the first book

The way this works at the database level is Hibernate creates a column where it saves the index of the elements in the collection to retainbooks_idx
this order at the database level.

When using a , elements must be added to the collection before being saved, otherwise Hibernate will throw an exception (List
: null index column for collection):org.hibernate.HibernateException

// This won't work!
def book = Book(title: 'The Shining')new
book.save()
author.addToBooks(book)

// Do it way instead.this
def book = Book(title: 'Misery')new
author.addToBooks(book)
author.save()

Bags of Objects

If ordering and uniqueness aren't a concern (or if you manage these explicitly) then you can use the Hibernate type to represent mapped collections.Bag

The only change required for this is to define the collection type as a :Collection

http://docs.jboss.org/hibernate/core/3.6/reference/en-US/html/collections.html

110

class Author {

Collection books

 hasMany = [books: Book]static
}

Since uniqueness and order aren't managed by Hibernate, adding to or removing from collections mapped as a Bag don't trigger a load of all existing
instances from the database, so this approach will perform better and require less memory than using a or a .Set List

Maps of Objects

If you want a simple map of string/value pairs GORM can map this with the following:

class Author {
 Map books // map of ISBN:book names
}

def a = Author()new
a.books = [:]"1590597583" "Grails Book"
a.save()

In this case the key and value of the map MUST be strings.

If you want a Map of objects then you can do this:

class Book {

Map authors

 hasMany = [authors: Author]static
}

def a = Author(name:)new "Stephen King"

def book = Book()new
book.authors = [stephen:a]
book.save()

The static property defines the type of the elements within the Map. The keys for the map be strings.hasMany must

A Note on Collection Types and Performance

111

The Java type doesn't allow duplicates. To ensure uniqueness when adding an entry to a association Hibernate has to load the entire associationsSet Set
from the database. If you have a large numbers of entries in the association this can be costly in terms of performance.

The same behavior is required for types, since Hibernate needs to load the entire association to maintain order. Therefore it is recommended that ifList
you anticipate a large numbers of records in the association that you make the association bidirectional so that the link can be created on the inverse side.
For example consider the following code:

def book = Book(title:)new "New Grails Book"
def author = Author.get(1)
book.author = author
book.save()

In this example the association link is being created by the child (Book) and hence it is not necessary to manipulate the collection directly resulting in
fewer queries and more efficient code. Given an with a large number of associated instances if you were to write code like the followingAuthor Book
you would see an impact on performance:

def book = Book(title:)new "New Grails Book"
def author = Author.get(1)
author.addToBooks(book)
author.save()

You could also model the collection as a Hibernate Bag as described above.

7.3 Persistence Basics
A key thing to remember about Grails is that under the surface Grails is using for persistence. If you are coming from a background of using Hibernate

 or , Hibernate's "session" model may feel a little strange.ActiveRecord iBatis/MyBatis

Grails automatically binds a Hibernate session to the currently executing request. This lets you use the and methods as well as other GORMsave delete
methods transparently.

Transactional Write-Behind

A useful feature of Hibernate over direct JDBC calls and even other frameworks is that when you call or it does not necessarily perform anysave delete
SQL operations . Hibernate batches up SQL statements and executes them as late as possible, often at the end of the request when flushingat that point
and closing the session. This is typically done for you automatically by Grails, which manages your Hibernate session.

Hibernate caches database updates where possible, only actually pushing the changes when it knows that a flush is required, or when a flush is triggered
programmatically. One common case where Hibernate will flush cached updates is when performing queries since the cached information might be
included in the query results. But as long as you're doing non-conflicting saves, updates, and deletes, they'll be batched until the session is flushed. This
can be a significant performance boost for applications that do a lot of database writes.

Note that flushing is not the same as committing a transaction. If your actions are performed in the context of a transaction, flushing will execute SQL
updates but the database will save the changes in its transaction queue and only finalize the updates when the transaction commits.

http://www.hibernate.org/
http://wiki.rubyonrails.org/rails/pages/ActiveRecord
http://www.mybatis.org/

112

7.3.1 Saving and Updating
An example of using the method can be seen below:save

def p = Person.get(1)
p.save()

This save will be not be pushed to the database immediately - it will be pushed when the next flush occurs. But there are occasions when you want to
control when those statements are executed or, in Hibernate terminology, when the session is "flushed". To do so you can use the flush argument to the
save method:

def p = Person.get(1)
p.save(flush:)true

Note that in this case pending SQL statements including previous saves, deletes, etc. will be synchronized with the database. This also lets you catchall
any exceptions, which is typically useful in highly concurrent scenarios involving :optimistic locking

def p = Person.get(1)
 {try

 p.save(flush:)true
}

 (org.springframework.dao.DataIntegrityViolationException e) {catch
 // deal with exception
}

Another thing to bear in mind is that Grails a domain instance every time you save it. If that validation fails the domain instance will bevalidates not
persisted to the database. By default, will simply return in this case, but if you would prefer it to throw an exception you can use the save() null

 argument:failOnError

113

def p = Person.get(1)
 {try

 p.save(failOnError:)true
}

 (ValidationException e) {catch
 // deal with exception
}

You can even change the default behaviour with a setting in , as described in the . Just remember thatapplication.groovy section on configuration
when you are saving domain instances that have been bound with data provided by the user, the likelihood of validation exceptions is quite high and you
won't want those exceptions propagating to the end user.

You can find out more about the subtleties of saving data in - a must read! this article

7.3.2 Deleting Objects
An example of the method can be seen below:delete

def p = Person.get(1)
p.delete()

As with saves, Hibernate will use transactional write-behind to perform the delete; to perform the delete in-place you can use the argument:flush

def p = Person.get(1)
p.delete(flush:)true

Using the argument lets you catch any errors that occur during a delete. A common error that may occur is if you violate a database constraint,flush
although this is normally down to a programming or schema error. The following example shows how to catch a

 that is thrown when you violate the database constraints:DataIntegrityViolationException

http://blog.springsource.com/2010/06/23/gorm-gotchas-part-1/

114

def p = Person.get(1)

 {try
 p.delete(flush:)true
}

 (org.springframework.dao.DataIntegrityViolationException e) {catch
 flash.message = "Could not delete person ${p.name}"
 redirect(action: , id: p.id)"show"
}

Note that Grails does not supply a method as deleting data is discouraged and can often be avoided through boolean flags/logic.deleteAll

If you really need to batch delete data you can use the method to do batch DML statements:executeUpdate

Customer.executeUpdate(,"delete Customer c where c.name = :oldName"
 [oldName:])"Fred"

7.3.3 Understanding Cascading Updates and Deletes
It is critical that you understand how cascading updates and deletes work when using GORM. The key part to remember is the setting whichbelongsTo
controls which class "owns" a relationship.

Whether it is a one-to-one, one-to-many or many-to-many, defining will result in updates cascading from the owning class to its dependantbelongsTo
(the other side of the relationship), and for many-/one-to-one and one-to-many relationships deletes will also cascade.

If you define then no cascades will happen and you will have to manually save each object (except in the case of the one-to-many, indo not belongsTo
which case saves will cascade automatically if a new instance is in a collection).hasMany

Here is an example:

class Airport {
 nameString
 hasMany = [flights: Flight]static
}

115

class Flight {
 numberString
 belongsTo = [airport: Airport]static
}

If I now create an and add some s to it I can save the and have the updates cascaded down to each flight, hence saving theAirport Flight Airport
whole object graph:

new Airport(name:)"Gatwick"
 .addToFlights(Flight(number:))new "BA3430"
 .addToFlights(Flight(number:))new "EZ0938"
 .save()

Conversely if I later delete the all s associated with it will also be deleted:Airport Flight

def airport = Airport.findByName()"Gatwick"
airport.delete()

However, if I were to remove then the above cascading deletion code . To understand this better take a look at thebelongsTo would not work
summaries below that describe the default behaviour of GORM with regards to specific associations. Also read of the GORM Gotchas series ofpart 2
articles to get a deeper understanding of relationships and cascading.

Bidirectional one-to-many with belongsTo

class A { hasMany = [bees: B] }static

class B { belongsTo = [a: A] }static

http://blog.springsource.com/2010/07/02/gorm-gotchas-part-2/

116

In the case of a bidirectional one-to-many where the many side defines a then the cascade strategy is set to "ALL" for the one side andbelongsTo
"NONE" for the many side.

Unidirectional one-to-many

class A { hasMany = [bees: B] }static

class B { }

In the case of a unidirectional one-to-many where the many side defines no belongsTo then the cascade strategy is set to "SAVE-UPDATE".

Bidirectional one-to-many, no belongsTo

class A { hasMany = [bees: B] }static

class B { A a }

In the case of a bidirectional one-to-many where the many side does not define a then the cascade strategy is set to "SAVE-UPDATE" forbelongsTo
the one side and "NONE" for the many side.

Unidirectional one-to-one with belongsTo

class A { }

117

class B { belongsTo = [a: A] }static

In the case of a unidirectional one-to-one association that defines a then the cascade strategy is set to "ALL" for the owning side of thebelongsTo
relationship (A->B) and "NONE" from the side that defines the (B->A)belongsTo

Note that if you need further control over cascading behaviour, you can use the . ORM DSL

7.3.4 Eager and Lazy Fetching
Associations in GORM are by default lazy. This is best explained by example:

class Airport {
 nameString
 hasMany = [flights: Flight]static
}

class Flight {
 numberString
 Location destination
 belongsTo = [airport: Airport]static
}

class Location {
 cityString
 countryString
}

Given the above domain classes and the following code:

118

def airport = Airport.findByName()"Gatwick"
 (flight in airport.flights) {for

 println flight.destination.city
}

GORM will execute a single SQL query to fetch the instance, another to get its flights, and then 1 extra query for over the Airport each iteration
 association to get the current flight's destination. In other words you get N+1 queries (if you exclude the original one to get the airport).flights

Configuring Eager Fetching

An alternative approach that avoids the N+1 queries is to use eager fetching, which can be specified as follows:

class Airport {
 nameString
 hasMany = [flights: Flight]static
 mapping = {static
 flights lazy: false
 }
}

In this case the association will be loaded at the same time as its instance, although a second query will be executed to fetch theflights Airport
collection. You can also use instead of , in which case GORM will only execute a single query to get the airports andfetch: 'join' lazy: false
their flights. This works well for single-ended associations, but you need to be careful with one-to-manys. Queries will work as you'd expect right up to
the moment you add a limit to the number of results you want. At that point, you will likely end up with fewer results than you were expecting. The reason
for this is quite technical but ultimately the problem arises from GORM using a left outer join.

So, the recommendation is currently to use for single-ended associations and for one-to-manys.fetch: 'join' lazy: false

Be careful how and where you use eager loading because you could load your entire database into memory with too many eager associations. You can
find more information on the mapping options in the .section on the ORM DSL

Using Batch Fetching

Although eager fetching is appropriate for some cases, it is not always desirable. If you made everything eager you could quite possibly load your entire
database into memory resulting in performance and memory problems. An alternative to eager fetching is to use batch fetching. You can configure
Hibernate to lazily fetch results in "batches". For example:

119

class Airport {
 nameString
 hasMany = [flights: Flight]static
 mapping = {static
 flights batchSize: 10
 }
}

In this case, due to the argument, when you iterate over the association, Hibernate will fetch results in batches of 10. For examplebatchSize flights
if you had an that had 30 flights, if you didn't configure batch fetching you would get 1 query to fetch the and then queries toAirport Airport 30
fetch each flight. With batch fetching you get 1 query to fetch the and 3 queries to fetch each in batches of 10. In other words, batchAirport Flight
fetching is an optimization of the lazy fetching strategy. Batch fetching can also be configured at the class level as follows:

class Flight {
 …
 mapping = {static
 batchSize 10
 }
}

Check out of the GORM Gotchas series for more in-depth coverage of this tricky topic. part 3

7.3.5 Pessimistic and Optimistic Locking

Optimistic Locking

By default GORM classes are configured for optimistic locking. Optimistic locking is a feature of Hibernate which involves storing a version value in a
special column in the database that is incremented after each update.version

The column gets read into a property that contains the current versioned state of persistent instance which you can access:version version

def airport = Airport.get(10)

println airport.version

When you perform updates Hibernate will automatically check the version property against the version column in the database and if they differ will
throw a . This will roll back the transaction if one is active.StaleObjectException

This is useful as it allows a certain level of atomicity without resorting to pessimistic locking that has an inherit performance penalty. The downside is that
you have to deal with this exception if you have highly concurrent writes. This requires flushing the session:

http://blog.springsource.com/2010/07/28/gorm-gotchas-part-3/
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/StaleObjectStateException.html

120

def airport = Airport.get(10)

 {try
 airport.name = "Heathrow"
 airport.save(flush:)true
}

 (org.springframework.dao.OptimisticLockingFailureException e) {catch
 // deal with exception
}

The way you deal with the exception depends on the application. You could attempt a programmatic merge of the data or go back to the user and ask them
to resolve the conflict.

Alternatively, if it becomes a problem you can resort to pessimistic locking.

The will only be updated after flushing the session.version

Pessimistic Locking

Pessimistic locking is equivalent to doing a SQL "SELECT * FOR UPDATE" statement and locking a row in the database. This has the implication that
other read operations will be blocking until the lock is released.

In Grails pessimistic locking is performed on an existing instance with the method:lock

def airport = Airport.get(10)
airport.lock() // lock updatefor
airport.name = "Heathrow"
airport.save()

Grails will automatically deal with releasing the lock for you once the transaction has been committed. However, in the above case what we are doing is
"upgrading" from a regular SELECT to a SELECT..FOR UPDATE and another thread could still have updated the record in between the call to get()
and the call to .lock()

To get around this problem you can use the static method that takes an id just like :lock get

def airport = Airport.lock(10) // lock updatefor
airport.name = "Heathrow"
airport.save()

121

In this case only SELECT..FOR UPDATE is issued.

As well as the method you can also obtain a pessimistic locking using queries. For example using a dynamic finder:lock

def airport = Airport.findByName(, [lock:])"Heathrow" true

Or using criteria:

def airport = Airport.createCriteria().get {
 eq('name', 'Heathrow')
 lock true
}

7.3.6 Modification Checking
Once you have loaded and possibly modified a persistent domain class instance, it isn't straightforward to retrieve the original values. If you try to reload
the instance using Hibernate will return the current modified instance from its Session cache. Reloading using another query would trigger a flushget
which could cause problems if your data isn't ready to be flushed yet. So GORM provides some methods to retrieve the original values that Hibernate
caches when it loads the instance (which it uses for dirty checking).

isDirty

You can use the method to check if any field has been modified:isDirty

def airport = Airport.get(10)
assert !airport.isDirty()

airport.properties = params
 (airport.isDirty()) {if

 // something based on changed statedo
}

 does not currently check collection associations, but it does check all other persistent properties andisDirty()
associations.

You can also check if individual fields have been modified:

122

def airport = Airport.get(10)
assert !airport.isDirty()

airport.properties = params
 (airport.isDirty('name')) {if

 // something based on changed namedo
}

getDirtyPropertyNames

You can use the method to retrieve the names of modified fields; this may be empty but will not be null:getDirtyPropertyNames

def airport = Airport.get(10)
assert !airport.isDirty()

airport.properties = params
def modifiedFieldNames = airport.getDirtyPropertyNames()

 (fieldName in modifiedFieldNames) {for
 // something based on changed valuedo
}

getPersistentValue

You can use the method to retrieve the value of a modified field:getPersistentValue

def airport = Airport.get(10)
assert !airport.isDirty()

airport.properties = params
def modifiedFieldNames = airport.getDirtyPropertyNames()

 (fieldName in modifiedFieldNames) {for
 def currentValue = airport."$fieldName"
 def originalValue = airport.getPersistentValue(fieldName)
 (currentValue != originalValue) {if
 // something based on changed valuedo
 }
}

7.4 Querying with GORM

123

GORM supports a number of powerful ways to query from dynamic finders, to criteria to Hibernate's object oriented query language HQL. Depending on
the complexity of the query you have the following options in order of flexibility and power:

Dynamic Finders

Where Queries

Criteria Queries

Hibernate Query Language (HQL)

In addition, Groovy's ability to manipulate collections with and methods like sort, findAll and so on combined with GORM results in a powerfulGPath
combination.

However, let's start with the basics.

Listing instances

Use the method to obtain all instances of a given class:list

def books = Book.list()

The method supports arguments to perform pagination:list

def books = Book.list(offset:10, max:20)

as well as sorting:

def books = Book.list(sort: , order:)"title" "asc"

Here, the argument is the name of the domain class property that you wish to sort on, and the argument is either for ending or sort order asc asc
 for ending.desc desc

Retrieval by Database Identifier

The second basic form of retrieval is by database identifier using the method:get

http://groovy.codehaus.org/GPath

124

def book = Book.get(23)

You can also obtain a list of instances for a set of identifiers using :getAll

def books = Book.getAll(23, 93, 81)

7.4.1 Dynamic Finders
GORM supports the concept of . A dynamic finder looks like a static method invocation, but the methods themselves don't actually existdynamic finders
in any form at the code level.

Instead, a method is auto-magically generated using code synthesis at runtime, based on the properties of a given class. Take for example the class:Book

class Book {
 titleString
 Date releaseDate
 Author author
}

class Author {
 nameString
}

The class has properties such as , and . These can be used by the and methods in the form ofBook title releaseDate author findBy findAllBy
"method expressions":

125

def book = Book.findByTitle()"The Stand"

book = Book.findByTitleLike()"Harry Pot%"

book = Book.findByReleaseDateBetween(firstDate, secondDate)

book = Book.findByReleaseDateGreaterThan(someDate)

book = Book.findByTitleLikeOrReleaseDateLessThan(, someDate)"%Something%"

Method Expressions

A method expression in GORM is made up of the prefix such as followed by an expression that combines one or more properties. The basic formfindBy
is:

Book.findBy([Property][Comparator][Operator])?[Property][Comparator]Boolean

The tokens marked with a '?' are optional. Each comparator changes the nature of the query. For example:

def book = Book.findByTitle()"The Stand"

book = Book.findByTitleLike()"Harry Pot%"

In the above example the first query is equivalent to equality whilst the latter, due to the comparator, is equivalent to a SQL expression.Like like

The possible comparators include:

126

InList - In the list of given values

LessThan - less than a given value

LessThanEquals - less than or equal a give value

GreaterThan - greater than a given value

GreaterThanEquals - greater than or equal a given value

Like - Equivalent to a SQL like expression

Ilike - Similar to a , except case insensitiveLike

NotEqual - Negates equality

InRange - Between the and values of a Groovy Rangefrom to

Rlike - Performs a Regexp LIKE in MySQL or Oracle otherwise falls back to Like

Between - Between two values (requires two arguments)

IsNotNull - Not a null value (doesn't take an argument)

IsNull - Is a null value (doesn't take an argument)

Notice that the last three require different numbers of method arguments compared to the rest, as demonstrated in the following example:

def now = Date()new
def lastWeek = now - 7
def book = Book.findByReleaseDateBetween(lastWeek, now)

books = Book.findAllByReleaseDateIsNull()
books = Book.findAllByReleaseDateIsNotNull()

Boolean logic (AND/OR)

Method expressions can also use a boolean operator to combine two or more criteria:

def books = Book.findAllByTitleLikeAndReleaseDateGreaterThan(
 , Date() - 30)"%Java%" new

In this case we're using in the middle of the query to make sure both conditions are satisfied, but you could equally use :And Or

127

def books = Book.findAllByTitleLikeOrReleaseDateGreaterThan(
 , Date() - 30)"%Java%" new

You can combine as many criteria as you like, but they must all be combined with or all . If you need to combine and or if the number ofAnd Or And Or
criteria creates a very long method name, just convert the query to a or query.Criteria HQL

Querying Associations

Associations can also be used within queries:

def author = Author.findByName()"Stephen King"

def books = author ? Book.findAllByAuthor(author) : []

In this case if the instance is not null we use it in a query to obtain all the instances for the given .Author Book Author

Pagination and Sorting

The same pagination and sorting parameters available on the method can also be used with dynamic finders by supplying a map as the final parameter:list

def books = Book.findAllByTitleLike(,"Harry Pot%"
 [max: 3, offset: 2, sort: , order:])"title" "desc"

7.4.2 Where Queries
The method, introduced in Grails 2.0, builds on the support for by providing an enhanced, compile-time checked query DSL forwhere Detached Criteria
common queries. The method is more flexible than dynamic finders, less verbose than criteria and provides a powerful mechanism to composewhere
queries.

Basic Querying

The method accepts a closure that looks very similar to Groovy's regular collection methods. The closure should define the logical criteria inwhere
regular Groovy syntax, for example:

128

def query = Person.where {
 firstName == "Bart"
}
Person bart = query.find()

The returned object is a instance, which means it is not associated with any particular database connection or session. This meansDetachedCriteria
you can use the method to define common queries at the class level:where

class Person {
 simpsons = where {static
 lastName == "Simpson"
 }
 …
}
…
Person.simpsons.each {
 println it.firstname
}

Query execution is lazy and only happens upon usage of the instance. If you want to execute a where-style query immediately there areDetachedCriteria
variations of the and methods to accomplish this:findAll find

def results = Person.findAll {
 lastName == "Simpson"
}
def results = Person.findAll(sort:) {"firstName"
 lastName == "Simpson"
}
Person p = Person.find { firstName == }"Bart"

Each Groovy operator maps onto a regular criteria method. The following table provides a map of Groovy operators to methods:

129

Operator Criteria Method Description

== eq Equal to

!= ne Not equal to

> gt Greater than

< lt Less than

>= ge Greater than or equal to

<= le Less than or equal to

in inList Contained within the given list

==~ like Like a given string

=~ ilike Case insensitive like

It is possible use regular Groovy comparison operators and logic to formulate complex queries:

def query = Person.where {
 (lastName != && firstName !=) || (firstName == && age > 9)"Simpson" "Fred" "Bart"
}
def results = query.list(sort:)"firstName"

The Groovy regex matching operators map onto like and ilike queries unless the expression on the right hand side is a object, in which casePattern
they map onto an query:rlike

def query = Person.where {
 firstName ==~ ~/B.+/
}

Note that queries are only supported if the underlying database supports regular expressionsrlike

A criteria query can be done by combining the keyword with a range:between in

130

def query = Person.where {
 age in 18..65
}

Finally, you can do and style queries by using with regular comparison operators:isNull isNotNull null

def query = Person.where {
 middleName == null
}

Query Composition

Since the return value of the method is a instance you can compose new queries from the original query:where DetachedCriteria

def query = Person.where {
 lastName == "Simpson"
}
def bartQuery = query.where {
 firstName == "Bart"
}
Person p = bartQuery.find()

Note that you cannot pass a closure defined as a variable into the method unless it has been explicitly cast to a instance.where DetachedCriteria
In other words the following will produce an error:

def callable = {
 lastName == "Simpson"
}
def query = Person.where(callable)

The above must be written as follows:

131

import grails.gorm.DetachedCriteria

def callable = {
 lastName == "Simpson"
} as DetachedCriteria<Person>
def query = Person.where(callable)

As you can see the closure definition is cast (using the Groovy keyword) to a instance targeted at the class.as DetachedCriteria Person

Conjunction, Disjunction and Negation

As mentioned previously you can combine regular Groovy logical operators (and) to form conjunctions and disjunctions:|| &&

def query = Person.where {
 (lastName != && firstName !=) || (firstName == && age > 9)"Simpson" "Fred" "Bart"
}

You can also negate a logical comparison using :!

def query = Person.where {
 firstName == && !(lastName == 'Simpson')"Fred"
}

Property Comparison Queries

If you use a property name on both the left hand and right side of a comparison expression then the appropriate property comparison criteria is
automatically used:

def query = Person.where {
 firstName == lastName
}

The following table described how each comparison operator maps onto each criteria property comparison method:

132

Operator Criteria Method Description

== eqProperty Equal to

!= neProperty Not equal to

> gtProperty Greater than

< ltProperty Less than

>= geProperty Greater than or equal to

<= leProperty Less than or equal to

Querying Associations

Associations can be queried by using the dot operator to specify the property name of the association to be queried:

def query = Pet.where {
 owner.firstName == || owner.firstName == "Joe" "Fred"
}

You can group multiple criterion inside a closure method call where the name of the method matches the association name:

def query = Person.where {
 pets { name == || name == }"Jack" "Joe"
}

This technique can be combined with other top-level criteria:

def query = Person.where {
 pets { name == } || firstName == "Jack" "Ed"
}

For collection associations it is possible to apply queries to the size of the collection:

133

def query = Person.where {
 pets.size() == 2
}

The following table shows which operator maps onto which criteria method for each size() comparison:

Operator Criteria Method Description

== sizeEq The collection size is equal to

!= sizeNe The collection size is not equal to

> sizeGt The collection size is greater than

< sizeLt The collection size is less than

>= sizeGe The collection size is greater than or equal to

<= sizeLe The collection size is less than or equal to

Subqueries

It is possible to execute subqueries within where queries. For example to find all the people older than the average age the following query can be used:

final query = Person.where {
 age > avg(age)
}

The following table lists the possible subqueries:

Method Description

avg The average of all values

sum The sum of all values

max The maximum value

min The minimum value

count The count of all values

property Retrieves a property of the resulting entities

You can apply additional criteria to any subquery by using the method and passing in a closure containing the criteria:of

134

def query = Person.where {
 age > avg(age).of { lastName == } && firstName == "Simpson" "Homer"
}

Since the subquery returns multiple results, the criterion used compares all results. For example the following query will find all peopleproperty
younger than people with the surname "Simpson":

Person.where {
 age < property(age).of { lastName == }"Simpson"
}

More Advanced Subqueries in GORM

The support for subqueries has been extended. You can now use in with nested subqueries

def results = Person.where {
 firstName in where { age < 18 }.firstName
}.list()

Criteria and where queries can be seamlessly mixed:

def results = Person.withCriteria {
 notIn , Person.where { age < 18 }.firstName"firstName"
 }

Subqueries can be used with projections:

135

def results = Person.where {
 age > where { age > 18 }.avg('age')
}

Correlated queries that span two domain classes can be used:

def employees = Employee.where {
 region.continent in ['APAC',]"EMEA"
 }.id()
 def results = Sale.where {
 employee in employees && total > 100000
 }.employee.list()

And support for aliases (cross query references) using simple variable declarations has been added to where queries:

def query = Employee.where {
 def em1 = Employee
 exists Sale.where {
 def s1 = Sale
 def em2 = employee
 em2.id == em1.idreturn
 }.id()
}
def results = query.list()

Other Functions

There are several functions available to you within the context of a query. These are summarized in the table below:

136

Method Description

second The second of a date property

minute The minute of a date property

hour The hour of a date property

day The day of the month of a date property

month The month of a date property

year The year of a date property

lower Converts a string property to upper case

upper Converts a string property to lower case

length The length of a string property

trim Trims a string property

Currently functions can only be applied to properties or associations of domain classes. You cannot, for example, use a
function on a result of a subquery.

For example the following query can be used to find all pet's born in 2011:

def query = Pet.where {
 year(birthDate) == 2011
}

You can also apply functions to associations:

def query = Person.where {
 year(pets.birthDate) == 2009
}

Batch Updates and Deletes

Since each method call returns a instance, you can use queries to execute batch operations such as batch updates andwhere DetachedCriteria where
deletes. For example, the following query will update all people with the surname "Simpson" to have the surname "Bloggs":

137

def query = Person.where {
 lastName == 'Simpson'
}

 total = query.updateAll(lastName:)int "Bloggs"

Note that one limitation with regards to batch operations is that join queries (queries that query associations) are not
allowed.

To batch delete records you can use the method:deleteAll

def query = Person.where {
 lastName == 'Simpson'
}

 total = query.deleteAll()int

7.4.3 Criteria
Criteria is an advanced way to query that uses a Groovy builder to construct potentially complex queries. It is a much better approach than building up
query strings using a .StringBuffer

Criteria can be used either with the or methods. The builder uses Hibernate's Criteria API. The nodes on this builder map thecreateCriteria withCriteria
static methods found in the class of the Hibernate Criteria API. For example:Restrictions

def c = Account.createCriteria()
def results = c {
 between(, 500, 1000)"balance"
 eq(,)"branch" "London"
 or {
 like(,)"holderFirstName" "Fred%"
 like(,)"holderFirstName" "Barney%"
 }
 maxResults(10)
 order(,)"holderLastName" "desc"
}

This criteria will select up to 10 objects in a List matching the following criteria:Account

http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/criterion/Restrictions.html

138

balance is between 500 and 1000

branch is 'London'

holderFirstName starts with 'Fred' or 'Barney'

The results will be sorted in descending order by .holderLastName

If no records are found with the above criteria, an empty List is returned.

Conjunctions and Disjunctions

As demonstrated in the previous example you can group criteria in a logical OR using an block:or { }

or {
 between(, 500, 1000)"balance"
 eq(,)"branch" "London"
}

This also works with logical AND:

and {
 between(, 500, 1000)"balance"
 eq(,)"branch" "London"
}

And you can also negate using logical NOT:

not {
 between(, 500, 1000)"balance"
 eq(,)"branch" "London"
}

All top level conditions are implied to be AND'd together.

Querying Associations

Associations can be queried by having a node that matches the property name. For example say the class had many objects:Account Transaction

139

class Account {
 …
 hasMany = [transactions: Transaction]static
 …
}

We can query this association by using the property name as a builder node:transactions

def c = Account.createCriteria()
def now = Date()new
def results = c.list {
 transactions {
 between('date', now - 10, now)
 }
}

The above code will find all the instances that have performed within the last 10 days. You can also nest such associationAccount transactions
queries within logical blocks:

def c = Account.createCriteria()
def now = Date()new
def results = c.list {
 or {
 between('created', now - 10, now)
 transactions {
 between('date', now - 10, now)
 }
 }
}

Here we find all accounts that have either performed transactions in the last 10 days OR have been recently created in the last 10 days.

Querying with Projections

Projections may be used to customise the results. Define a "projections" node within the criteria builder tree to use projections. There are equivalent
methods within the projections node to the methods found in the Hibernate class:Projections

http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/criterion/Projections.html

140

def c = Account.createCriteria()

def numberOfBranches = c.get {
 projections {
 countDistinct('branch')
 }
}

When multiple fields are specified in the projection, a List of values will be returned. A single value will be returned otherwise.

SQL Projections

The criteria DSL provides access to Hibernate's SQL projection API.

// Box is a domain class…
class Box {
 widthint
 heightint
}

// Use SQL projections to retrieve the perimeter and area of all of the Box instances…
def c = Box.createCriteria()

def results = c.list {
 projections {
 sqlProjection '(2 * (width + height)) as perimeter, (width * height) as area', ['perimeter', 'area'],
[INTEGER, INTEGER]
 }
}

The first argument to the method is the SQL which defines the projections. The second argument is a list of Strings which representsqlProjection
column aliases corresponding to the projected values expressed in the SQL. The third argument is a list of instancesorg.hibernate.type.Type
which correspond to the projected values expressed in the SQL. The API supports all objects but constants likeorg.hibernate.type.Type
INTEGER, LONG, FLOAT etc. are provided by the DSL which correspond to all of the types defined in

.org.hibernate.type.StandardBasicTypes

Consider that the following table represents the data in the table.BOX

141

width height

2 7

2 8

2 9

4 9

The query above would return results like this:

[[18, 14], [20, 16], [22, 18], [26, 36]]

Each of the inner lists contains the 2 projected values for each , perimeter and area.Box

Note that if there are other references in scope wherever your criteria query is expressed that have names that conflict with
any of the type constants described above, the code in your criteria will refer to those references, not the type constants
provided by the DSL. In the unlikely event of that happening you can disambiguate the conflict by referring to the fully
qualified Hibernate type. For example instead of .StandardBasicTypes.INTEGER INTEGER

If only 1 value is being projected, the alias and the type do not need to be included in a list.

def results = c.list {
 projections {
 sqlProjection 'sum(width * height) as totalArea', 'totalArea', INTEGER
 }
}

That query would return a single result with the value of 84 as the total area of all of the instances.Box

The DSL supports grouped projections with the method.sqlGroupProjection

def results = c.list {
 projections {
 sqlGroupProjection 'width, sum(height) as combinedHeightsForThisWidth', 'width', ['width',
'combinedHeightsForThisWidth'], [INTEGER, INTEGER]
 }
}

142

The first argument to the method is the SQL which defines the projections. The second argument represents the group bysqlGroupProjection
clause that should be part of the query. That string may be single column name or a comma separated list of column names. The third argument is a list of
Strings which represent column aliases corresponding to the projected values expressed in the SQL. The fourth argument is a list of

 instances which correspond to the projected values expressed in the SQL.org.hibernate.type.Type

The query above is projecting the combined heights of boxes grouped by width and would return results that look like this:

[[2, 24], [4, 9]]

Each of the inner lists contains 2 values. The first value is a box width and the second value is the sum of the heights of all of the boxes which have that
width.

Using SQL Restrictions

You can access Hibernate's SQL Restrictions capabilities.

def c = Person.createCriteria()

def peopleWithShortFirstNames = c.list {
 sqlRestriction "char_length(first_name) <= 4"
}

SQL Restrictions may be parameterized to deal with SQL injection vulnerabilities related to dynamic restrictions.

def c = Person.createCriteria()

def peopleWithShortFirstNames = c.list {
 sqlRestriction , [maxValue, minValue]"char_length(first_name) < ? AND char_length(first_name) > ?"
}

Note that the parameter there is SQL. The attribute referenced in the example refers to the persistencefirst_name
model, not the object model like in HQL queries. The property named is mapped to the Person firstName

 column in the database and you must refer to that in the string.first_name sqlRestriction

Also note that the SQL used here is not necessarily portable across databases.

143

Using Scrollable Results

You can use Hibernate's feature by calling the scroll method:ScrollableResults

def results = crit.scroll {
 maxResults(10)
}
def f = results.first()
def l = results.last()
def n = results.next()
def p = results.previous()

def = results.scroll(10)future
def accountNumber = results.getLong('number')

To quote the documentation of Hibernate ScrollableResults:

A result iterator that allows moving around within the results by arbitrary increments. The Query / ScrollableResults pattern is very similar
to the JDBC PreparedStatement / ResultSet pattern and the semantics of methods of this interface are similar to the similarly named methods
on ResultSet.

Contrary to JDBC, columns of results are numbered from zero.

Setting properties in the Criteria instance

If a node within the builder tree doesn't match a particular criterion it will attempt to set a property on the Criteria object itself. This allows full access to
all the properties in this class. This example calls and on the instance:setMaxResults setFirstResult Criteria

import org.hibernate.FetchMode as FM
…
def results = c.list {
 maxResults(10)
 firstResult(50)
 fetchMode(, FM.JOIN)"aRelationship"
}

Querying with Eager Fetching

In the section on we discussed how to declaratively specify fetching to avoid the N+1 SELECT problem. However, this can alsoEager and Lazy Fetching
be achieved using a criteria query:

http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/ScrollableResults.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/Criteria.html

144

def criteria = Task.createCriteria()
def tasks = criteria.list{
 eq , task.assignee.id"assignee.id"
 join 'assignee'
 join 'project'
 order 'priority', 'asc'
}

Notice the usage of the method: it tells the criteria API to use a to fetch the named associations with the instances. It's probably bestjoin JOIN Task
not to use this for one-to-many associations though, because you will most likely end up with duplicate results. Instead, use the 'select' fetch mode:

import org.hibernate.FetchMode as FM
…
def results = Airport.withCriteria {
 eq , "region" "EMEA"
 fetchMode , FM.SELECT"flights"
}

Although this approach triggers a second query to get the association, you will get reliable results - even with the option.flights maxResults

 and are general settings of the query and can only be specified at the top-level, i.e. you cannot usefetchMode join
them inside projections or association constraints.

An important point to bear in mind is that if you include associations in the query constraints, those associations will automatically be eagerly loaded. For
example, in this query:

def results = Airport.withCriteria {
 eq , "region" "EMEA"
 flights {
 like , "number" "BA%"
 }
}

the collection would be loaded eagerly via a join even though the fetch mode has not been explicitly set.flights

Method Reference

If you invoke the builder with no method name such as:

145

c { … }

The build defaults to listing all the results and hence the above is equivalent to:

c.list { … }

Method Description

list This is the default method. It returns all matching rows.

get
Returns a unique result set, i.e. just one row. The criteria has to be formed that way, that it only queries one row. This method is not to be
confused with a limit to just the first row.

scroll Returns a scrollable result set.

listDistinct
If subqueries or associations are used, one may end up with the same row multiple times in the result set, this allows listing only distinct
entities and is equivalent to of the class.DISTINCT_ROOT_ENTITY CriteriaSpecification

count Returns the number of matching rows.

Combining Criteria

You can combine multiple criteria closures in the following way:

def emeaCriteria = {
 eq , "region" "EMEA"
}

def results = Airport.withCriteria {
 emeaCriteria.delegate = delegate
 emeaCriteria()
 flights {
 like , "number" "BA%"
 }
}

This technique requires that each criteria must refer to the same domain class (i.e.). A more flexible approach is to use Detached Criteria, asAirport
described in the following section.

http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/criterion/CriteriaSpecification.html

146

7.4.4 Detached Criteria
Detached Criteria are criteria queries that are not associated with any given database session/connection. Supported since Grails 2.0, Detached Criteria
queries have many uses including allowing you to create common reusable criteria queries, execute subqueries and execute batch updates/deletes.

Building Detached Criteria Queries

The primary point of entry for using the Detached Criteria is the class which accepts a domain class as the onlygrails.gorm.DetachedCriteria
argument to its constructor:

import grails.gorm.*
…
def criteria = DetachedCriteria(Person)new

Once you have obtained a reference to a detached criteria instance you can execute queries or criteria queries to build up the appropriate query. Towhere
build a normal criteria query you can use the method:build

def criteria = DetachedCriteria(Person).build {new
 eq 'lastName', 'Simpson'
}

Note that methods on the instance mutate the original object but instead return a new query. In other words, you have toDetachedCriteria do not
use the return value of the method to obtain the mutated criteria object:build

def criteria = DetachedCriteria(Person).build {new
 eq 'lastName', 'Simpson'
}
def bartQuery = criteria.build {
 eq 'firstName', 'Bart'
}

Executing Detached Criteria Queries

Unlike regular criteria, Detached Criteria are lazy, in that no query is executed at the point of definition. Once a Detached Criteria query has been
constructed then there are a number of useful query methods which are summarized in the table below:

147

Method Description

list List all matching entities

get Return a single matching result

count Count all matching records

exists Return true if any matching records exist

deleteAll Delete all matching records

updateAll(Map) Update all matching records with the given properties

As an example the following code will list the first 4 matching records sorted by the property:firstName

def criteria = DetachedCriteria(Person).build {new
 eq 'lastName', 'Simpson'
}
def results = criteria.list(max:4, sort:)"firstName"

You can also supply additional criteria to the list method:

def results = criteria.list(max:4, sort:) {"firstName"
 gt 'age', 30
}

To retrieve a single result you can use the or methods (which are synonyms):get find

Person p = criteria.find() // or criteria.get()

The class itself also implements the interface which means that it can be treated like a list:DetachedCriteria Iterable

148

def criteria = DetachedCriteria(Person).build {new
 eq 'lastName', 'Simpson'
}
criteria.each {
 println it.firstName
}

In this case the query is only executed when the method is called. The same applies to all other Groovy collection iteration methods.each

You can also execute dynamic finders on just like on domain classes. For example:DetachedCriteria

def criteria = DetachedCriteria(Person).build {new
 eq 'lastName', 'Simpson'
}
def bart = criteria.findByFirstName()"Bart"

Using Detached Criteria for Subqueries

Within the context of a regular criteria query you can use to execute subquery. For example if you want to find all people who areDetachedCriteria
older than the average age the following query will accomplish that:

def results = Person.withCriteria {
 gt , DetachedCriteria(Person).build {"age" new
 projections {
 avg "age"
 }
 }
 order "firstName"
 }

Notice that in this case the subquery class is the same as the original criteria query class (i.e.) and hence the query can be shortened to:Person

149

def results = Person.withCriteria {
 gt , {"age"
 projections {
 avg "age"
 }
 }
 order "firstName"
 }

If the subquery class differs from the original criteria query then you will have to use the original syntax.

In the previous example the projection ensured that only a single result was returned (the average age). If your subquery returns multiple results then there
are different criteria methods that need to be used to compare the result. For example to find all the people older than the ages 18 to 65 a querygtAll
can be used:

def results = Person.withCriteria {
 gtAll , {"age"
 projections {
 property "age"
 }
 between 'age', 18, 65
 }

order "firstName"
}

The following table summarizes criteria methods for operating on subqueries that return multiple results:

Method Description

gtAll greater than all subquery results

geAll greater than or equal to all subquery results

ltAll less than all subquery results

leAll less than or equal to all subquery results

eqAll equal to all subquery results

neAll not equal to all subquery results

Batch Operations with Detached Criteria

The class can be used to execute batch operations such as batch updates and deletes. For example, the following query will updateDetachedCriteria
all people with the surname "Simpson" to have the surname "Bloggs":

150

def criteria = DetachedCriteria(Person).build {new
 eq 'lastName', 'Simpson'
}

 total = criteria.updateAll(lastName:)int "Bloggs"

Note that one limitation with regards to batch operations is that join queries (queries that query associations) are not
allowed within the instance.DetachedCriteria

To batch delete records you can use the method:deleteAll

def criteria = DetachedCriteria(Person).build {new
 eq 'lastName', 'Simpson'
}

 total = criteria.deleteAll()int

7.4.5 Hibernate Query Language (HQL)
GORM classes also support Hibernate's query language HQL, a very complete reference for which can be found of thein the Hibernate documentation
Hibernate documentation.

GORM provides a number of methods that work with HQL including , and . An example of a query can be seen below:find findAll executeQuery

def results =
 Book.findAll()"from Book as b where b.title like 'Lord of the%'"

Positional and Named Parameters

In this case the value passed to the query is hard coded, however you can equally use positional parameters:

def results =
 Book.findAll(, [])"from Book as b where b.title like ?" "The Shi%"

http://docs.jboss.org/hibernate/core/3.6/reference/en-US/html/queryhql.html

151

def author = Author.findByName()"Stephen King"
def books = Book.findAll(,"from Book as book where book.author = ?"
 [author])

Or even named parameters:

def results =
 Book.findAll(+"from Book as b "
 ,"where b.title like :search or b.author like :search"
 [search:])"The Shi%"

def author = Author.findByName()"Stephen King"
def books = Book.findAll(,"from Book as book where book.author = :author"
 [author: author])

Multiline Queries

-

-As of Grails 3.0.3, Triple-quoted Groovy multiline Strings now work properly with HQL queries. -

Use the line continuation character to separate the query across multiple lines:

def results = Book.findAll("\
from Book as b, \
 Author as a \

, ['Smith'])where b.author = a and a.surname = ?"

or

152

def results = Book.findAll("""
from Book as b,
 Author as a

, ['Smith']where b.author = a and a.surname = ?"
")""

Pagination and Sorting

You can also perform pagination and sorting whilst using HQL queries. To do so simply specify the pagination options as a Map at the end of the method
call and include an "ORDER BY" clause in the HQL:

def results =
 Book.findAll(+"from Book as b where "
 +"b.title like 'Lord of the%' "
 ,"order by b.title asc"
 [max: 10, offset: 20])

7.5 Advanced GORM Features
The following sections cover more advanced usages of GORM including caching, custom mapping and events.

7.5.1 Events and Auto Timestamping
GORM supports the registration of events as methods that get fired when certain events occurs such as deletes, inserts and updates. The following is a list
of supported events:

beforeInsert - Executed before an object is initially persisted to the database. If you return false, the insert will be cancelled.

beforeUpdate - Executed before an object is updated. If you return false, the update will be cancelled.

beforeDelete - Executed before an object is deleted. If you return false, the delete will be cancelled.

beforeValidate - Executed before an object is validated

afterInsert - Executed after an object is persisted to the database

afterUpdate - Executed after an object has been updated

afterDelete - Executed after an object has been deleted

onLoad - Executed when an object is loaded from the database

To add an event simply register the relevant method with your domain class.

153

Do not attempt to flush the session within an event (such as with obj.save(flush:true)). Since events are fired during
flushing this will cause a StackOverflowError.

Event types

The beforeInsert event

Fired before an object is saved to the database

class Person {
 Date NULL_DATE = Date(0)private static final new

 firstNameString
 lastNameString
 Date signupDate = NULL_DATE

def beforeInsert() {
 (signupDate == NULL_DATE) {if
 signupDate = Date()new
 }
 }
}

The beforeUpdate event

Fired before an existing object is updated

class Person {

def securityService

 firstNameString
 lastNameString
 lastUpdatedByString

 constraints = {static
 lastUpdatedBy nullable: true
 }

def beforeUpdate() {
 lastUpdatedBy = securityService.currentAuthenticatedUsername()
 }
}

The beforeDelete event

154

Fired before an object is deleted.

class Person {
 nameString

def beforeDelete() {
 ActivityTrace.withNewSession {
 ActivityTrace(eventName: , data: name).save()new "Person Deleted"
 }
 }
}

Notice the usage of method above. Since events are triggered whilst Hibernate is flushing using persistence methods like withNewSession save()
and won't result in objects being saved unless you run your operations with a new .delete() Session

Fortunately the method lets you share the same transactional JDBC connection even though you're using a different underlying withNewSession
.Session

The beforeValidate event

Fired before an object is validated.

class Person {
 nameString

 constraints = {static
 name size: 5..45
 }

def beforeValidate() {
 name = name?.trim()
 }
}

The method is run before any validators are run.beforeValidate

Validation may run more often than you think. It is triggered by the and methods as you'd expect,validate() save()
but it is also typically triggered just before the view is rendered as well. So when writing beforeValidate()
implementations, make sure that they can handle being called multiple times with the same property values.

GORM supports an overloaded version of which accepts a parameter which may include the names of the properties whichbeforeValidate List
are about to be validated. This version of will be called when the method has been invoked and passed a ofbeforeValidate validate List
property names as an argument.

155

class Person {
 nameString
 townString
 ageInteger

 constraints = {static
 name size: 5..45
 age range: 4..99
 }

def beforeValidate(List propertiesBeingValidated) {
 // pre validation work based on propertiesBeingValidateddo
 }
}

def p = Person(name: 'Jacob Brown', age: 10)new
p.validate(['age', 'name'])

Note that when is triggered indirectly because of a call to the method that the method isvalidate save validate
being invoked with no arguments, not a that includes all of the property names.List

Either or both versions of may be defined in a domain class. GORM will prefer the version if a is passed to beforeValidate List List validate
but will fall back on the no-arg version if the version does not exist. Likewise, GORM will prefer the no-arg version if no arguments are passed to List

 but will fall back on the version if the no-arg version does not exist. In that case, is passed to .validate List null beforeValidate

The onLoad/beforeLoad event

Fired immediately before an object is loaded from the database:

class Person {
 nameString
 Date dateCreated
 Date lastUpdated

def onLoad() {
 log.debug "Loading ${id}"
 }
}

 is effectively a synonym for , so only declare one or the other.beforeLoad() onLoad()

The afterLoad event

Fired immediately after an object is loaded from the database:

156

class Person {
 nameString
 Date dateCreated
 Date lastUpdated

def afterLoad() {
 name = "I'm loaded"
 }
}

Custom Event Listeners

As of Grails 2.0 there is a new API for plugins and applications to register and listen for persistence events. This API is not tied to Hibernate and also
works for other persistence plugins such as the .MongoDB plugin for GORM

To use this API you need to subclass (in package) andAbstractPersistenceEventListener org.grails.datastore.mapping.engine.event
implement the methods and . You also must provide a reference to the datastore to the listener. TheonPersistenceEvent supportsEventType
simplest possible implementation can be seen below:

http://grails.org/plugin/mongodb

157

public MyPersistenceListener(Datastore datastore) {final
 (datastore)super
}

@Override
 void onPersistenceEvent(AbstractPersistenceEvent event) {protected final

 (event.eventType) {switch
 PreInsert:case
 println "PRE INSERT ${event.entityObject}"
 break
 PostInsert:case
 println "POST INSERT ${event.entityObject}"
 break
 PreUpdate:case
 println "PRE UPDATE ${event.entityObject}"
 ;break
 PostUpdate:case
 println "POST UPDATE ${event.entityObject}"
 ;break
 PreDelete:case
 println "PRE DELETE ${event.entityObject}"
 ;break
 PostDelete:case
 println "POST DELETE ${event.entityObject}"
 ;break
 PreLoad:case
 println "PRE LOAD ${event.entityObject}"
 ;break
 PostLoad:case
 println "POST LOAD ${event.entityObject}"
 ;break
 }
}

@Override
 supportsEventType(<? ApplicationEvent> eventType) {public boolean Class extends

 return true
}

The class has many subclasses (, etc.) that provide further informationAbstractPersistenceEvent PreInsertEvent PostInsertEvent
specific to the event. A method is also provided on the event which allows you to veto an insert, update or delete operation.cancel()

Once you have created your event listener you need to register it with the . This can be done in :ApplicationContext BootStrap.groovy

def grailsApplication

def init = {
 def applicationContext = grailsApplication.mainContext
 applicationContext.eventTriggeringInterceptor.datastores.each { k, datastore ->
 applicationContext.addApplicationListener MyPersistenceListener(datastore)new
 }
}

or use this in a plugin:

158

def doWithApplicationContext = { applicationContext ->
 grailsApplication.mainContext.eventTriggeringInterceptor.datastores.each { k, datastore ->
 applicationContext.addApplicationListener MyPersistenceListener(datastore)new
 }
}

Hibernate Events

It is generally encouraged to use the non-Hibernate specific API described above, but if you need access to more detailed Hibernate events then you can
define custom Hibernate-specific event listeners.

You can also register event handler classes in an application's or in the grails-app/conf/spring/resources.groovy doWithSpring
closure in a plugin descriptor by registering a Spring bean named . This bean has one property, whichhibernateEventListeners listenerMap
specifies the listeners to register for various Hibernate events.

The values of the Map are instances of classes that implement one or more Hibernate listener interfaces. You can use one class that implements all of the
required interfaces, or one concrete class per interface, or any combination. The valid Map keys and corresponding interfaces are listed here:

159

Name Interface

auto-flush AutoFlushEventListener

merge MergeEventListener

create PersistEventListener

create-onflush PersistEventListener

delete DeleteEventListener

dirty-check DirtyCheckEventListener

evict EvictEventListener

flush FlushEventListener

flush-entity FlushEntityEventListener

load LoadEventListener

load-collection InitializeCollectionEventListener

lock LockEventListener

refresh RefreshEventListener

replicate ReplicateEventListener

save-update SaveOrUpdateEventListener

save SaveOrUpdateEventListener

update SaveOrUpdateEventListener

pre-load PreLoadEventListener

pre-update PreUpdateEventListener

pre-delete PreDeleteEventListener

pre-insert PreInsertEventListener

pre-collection-recreate PreCollectionRecreateEventListener

pre-collection-remove PreCollectionRemoveEventListener

pre-collection-update PreCollectionUpdateEventListener

post-load PostLoadEventListener

post-update PostUpdateEventListener

post-delete PostDeleteEventListener

post-insert PostInsertEventListener

post-commit-update PostUpdateEventListener

post-commit-delete PostDeleteEventListener

post-commit-insert PostInsertEventListener

post-collection-recreate PostCollectionRecreateEventListener

post-collection-remove PostCollectionRemoveEventListener

post-collection-update PostCollectionUpdateEventListener

http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/AutoFlushEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/MergeEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/PersistEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/PersistEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/DeleteEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/DirtyCheckEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/EvictEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/FlushEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/FlushEntityEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/LoadEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/InitializeCollectionEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/LockEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/RefreshEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/ReplicateEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/SaveOrUpdateEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/SaveOrUpdateEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/SaveOrUpdateEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/PreLoadEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/PreUpdateEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/PreDeleteEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/PreInsertEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/PreCollectionRecreateEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/PreCollectionRemoveEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/PreCollectionUpdateEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/PostLoadEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/PostUpdateEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/PostDeleteEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/PostInsertEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/PostUpdateEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/PostDeleteEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/PostInsertEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/PostCollectionRecreateEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/PostCollectionRemoveEventListener.html
http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/event/PostCollectionUpdateEventListener.html

160

For example, you could register a class which implements , AuditEventListener PostInsertEventListener
, and using the following in an application:PostUpdateEventListener PostDeleteEventListener

beans = {

auditListener(AuditEventListener)

hibernateEventListeners(HibernateEventListeners) {
 listenerMap = ['post-insert': auditListener,
 'post-update': auditListener,
 'post-delete': auditListener]
 }
}

or use this in a plugin:

def doWithSpring = {

auditListener(AuditEventListener)

hibernateEventListeners(HibernateEventListeners) {
 listenerMap = ['post-insert': auditListener,
 'post-update': auditListener,
 'post-delete': auditListener]
 }
}

Automatic timestamping

If you define a property it will be set to the current date for you when you create new instances. Likewise, if you define a dateCreated
 property it will be automatically be updated for you when you change persistent instances.lastUpdated

If this is not the behaviour you want you can disable this feature with:

class Person {
 Date dateCreated
 Date lastUpdated
 mapping = {static
 autoTimestamp false
 }
}

161

If you have constraints on either or , your domain instances willnullable: false dateCreated lastUpdated
fail validation - probably not what you want. Omit constraints from these properties unless you disable automatic
timestamping.

7.5.2 Custom ORM Mapping
Grails domain classes can be mapped onto many legacy schemas with an Object Relational Mapping DSL (domain specific language). The following
sections takes you through what is possible with the ORM DSL.

None of this is necessary if you are happy to stick to the conventions defined by GORM for table names, column names
and so on. You only needs this functionality if you need to tailor the way GORM maps onto legacy schemas or configures
caching

Custom mappings are defined using a static block defined within your domain class:mapping

class Person {
 …
 mapping = {static
 version false
 autoTimestamp false
 }
}

You can also configure global mappings in (or an external config file) using this setting:application.groovy

grails.gorm. .mapping = {default
 version false
 autoTimestamp false
}

It has the same syntax as the standard block but it applies to all your domain classes! You can then override these defaults within the mapping
 block of a domain class. mapping

7.5.2.1 Table and Column Names

Table names

The database table name which the class maps to can be customized using the method:table

162

class Person {
 …
 mapping = {static
 table 'people'
 }
}

In this case the class would be mapped to a table called instead of the default name of .people person

Column names

It is also possible to customize the mapping for individual columns onto the database. For example to change the name you can do:

class Person {

 firstNameString

 mapping = {static
 table 'people'
 firstName column: 'First_Name'
 }
}

Here is a dynamic method within the Closure that has a single Map parameter. Since its name corresponds to a domain classfirstName mapping
persistent field, the parameter values (in this case just) are used to configure the mapping for that property."column"

Column type

GORM supports configuration of Hibernate types with the DSL using the type attribute. This includes specifying user types that implement the Hibernate
 interface, which allows complete customization of how a type is persisted. As an example if you had a org.hibernate.usertype.UserType PostCodeType

you could use it as follows:

class Address {

 numberString
 postCodeString

 mapping = {static
 postCode type: PostCodeType
 }
}

http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/usertype/UserType.html

163

Alternatively if you just wanted to map it to one of Hibernate's basic types other than the default chosen by Grails you could use:

class Address {

 numberString
 postCodeString

 mapping = {static
 postCode type: 'text'
 }
}

This would make the column map to the default large-text type for the database you're using (for example TEXT or CLOB).postCode

See the Hibernate documentation regarding for further information.Basic Types

Many-to-One/One-to-One Mappings

In the case of associations it is also possible to configure the foreign keys used to map associations. In the case of a many-to-one or one-to-one association
this is exactly the same as any regular column. For example consider the following:

class Person {

 firstNameString
 Address address

 mapping = {static
 table 'people'
 firstName column: 'First_Name'
 address column: 'Person_Address_Id'
 }
}

By default the association would map to a foreign key column called . By using the above mapping we have changed the nameaddress address_id
of the foreign key column to .Person_Adress_Id

One-to-Many Mapping

With a bidirectional one-to-many you can change the foreign key column used by changing the column name on the many side of the association as per
the example in the previous section on one-to-one associations. However, with unidirectional associations the foreign key needs to be specified on the
association itself. For example given a unidirectional one-to-many relationship between and the following code will change thePerson Address
foreign key in the table:address

http://docs.jboss.org/hibernate/core/3.6/reference/en-US/html/mapping.html#mapping-types-basictypes

164

class Person {

 firstNameString

 hasMany = [addresses: Address]static

 mapping = {static
 table 'people'
 firstName column: 'First_Name'
 addresses column: 'Person_Address_Id'
 }
}

If you don't want the column to be in the table, but instead some intermediate join table you can use the parameter:address joinTable

class Person {

 firstNameString

 hasMany = [addresses: Address]static

 mapping = {static
 table 'people'
 firstName column: 'First_Name'
 addresses joinTable: [name: 'Person_Addresses',
 key: 'Person_Id',
 column: 'Address_Id']
 }
}

Many-to-Many Mapping

Grails, by default maps a many-to-many association using a join table. For example consider this many-to-many association:

class Group {
 …
 hasMany = [people: Person]static
}

165

class Person {
 …
 belongsTo = Groupstatic
 hasMany = [groups: Group]static
}

In this case Grails will create a join table called containing foreign keys called and referencing the group_person person_id group_id person
and tables. To change the column names you can specify a column within the mappings for each class.group

class Group {
 …
 mapping = {static
 people column: 'Group_Person_Id'
 }
}
class Person {
 …
 mapping = {static
 groups column: 'Group_Group_Id'
 }
}

You can also specify the name of the join table to use:

class Group {
 …
 mapping = {static
 people column: 'Group_Person_Id',
 joinTable: 'PERSON_GROUP_ASSOCIATIONS'
 }
}
class Person {
 …
 mapping = {static
 groups column: 'Group_Group_Id',
 joinTable: 'PERSON_GROUP_ASSOCIATIONS'
 }
}

7.5.2.2 Caching Strategy

Setting up caching

166

 features a second-level cache with a customizable cache provider. This needs to be configured in the Hibernate
 file as follows:grails-app/conf/application.yml

hibernate:
 cache:
 use_second_level_cache: true
 provider_class: net.sf.ehcache.hibernate.EhCacheProvider
 region:
 factory_class: org.hibernate.cache.ehcache.EhCacheRegionFactory

You can customize any of these settings, for example to use a distributed caching mechanism.

For further reading on caching and in particular Hibernate's second-level cache, refer to the onHibernate documentation
the subject.

Caching instances

Call the method in your mapping block to enable caching with the default settings:cache

class Person {
 …
 mapping = {static
 table 'people'
 cache true
 }
}

This will configure a 'read-write' cache that includes both lazy and non-lazy properties. You can customize this further:

class Person {
 …
 mapping = {static
 table 'people'
 cache usage: 'read-only', include: 'non-lazy'
 }
}

Caching associations

http://www.hibernate.org/
http://docs.jboss.org/hibernate/core/3.6/reference/en-US/html/performance.html#performance-cache

167

As well as the ability to use Hibernate's second level cache to cache instances you can also cache collections (associations) of objects. For example:

class Person {

 firstNameString

 hasMany = [addresses: Address]static

 mapping = {static
 table 'people'
 version false
 addresses column: 'Address', cache: true
 }
}

class Address {
 numberString
 postCodeString
}

This will enable a 'read-write' caching mechanism on the collection. You can also use:addresses

cache: 'read-write' // or 'read-only' or 'transactional'

to further configure the cache usage.

Caching Queries

You can cache queries such as dynamic finders and criteria. To do so using a dynamic finder you can pass the argument:cache

def person = Person.findByFirstName(, [cache:])"Fred" true

168

In order for the results of the query to be cached, you must enable caching in your mapping as discussed in the previous
section.

You can also cache criteria queries:

def people = Person.withCriteria {
 like('firstName', 'Fr%')
 cache true
}

Cache usages

Below is a description of the different cache settings and their usages:

read-only - If your application needs to read but never modify instances of a persistent class, a read-only cache may be used.

read-write - If the application needs to update data, a read-write cache might be appropriate.

nonstrict-read-write - If the application only occasionally needs to update data (i.e. if it is very unlikely that two transactions would try to
update the same item simultaneously) and strict transaction isolation is not required, a cache might be appropriate.nonstrict-read-write

transactional - The cache strategy provides support for fully transactional cache providers such as JBoss TreeCache. Suchtransactional
a cache may only be used in a JTA environment and you must specify in the hibernate.transaction.manager_lookup_class

 file's config.grails-app/conf/application.groovy hibernate

7.5.2.3 Inheritance Strategies
By default GORM classes use inheritance mapping. This has the disadvantage that columns cannot have a table-per-hierarchy NOT-NULL
constraint applied to them at the database level. If you would prefer to use a inheritance strategy you can do so as follows:table-per-subclass

class Payment {
 amountInteger

 mapping = {static
 tablePerHierarchy false
 }
}

class CreditCardPayment Payment {extends
 cardNumberString
}

The mapping of the root class specifies that it will not be using mapping for all child classes. Payment table-per-hierarchy

169

7.5.2.4 Custom Database Identity
You can customize how GORM generates identifiers for the database using the DSL. By default GORM relies on the native database mechanism for
generating ids. This is by far the best approach, but there are still many schemas that have different approaches to identity.

To deal with this Hibernate defines the concept of an id generator. You can customize the id generator and the column it maps to as follows:

class Person {
 …
 mapping = {static
 table 'people'
 version false
 id generator: 'hilo',
 params: [table: 'hi_value',
 column: 'next_value',
 max_lo: 100]
 }
}

In this case we're using one of Hibernate's built in 'hilo' generators that uses a separate table to generate ids.

For more information on the different Hibernate generators refer to the Hibernate reference documentation

Although you don't typically specify the field (Grails adds it for you) you can still configure its mapping like the other properties. For example toid
customise the column for the id property you can do:

class Person {
 …
 mapping = {static
 table 'people'
 version false
 id column: 'person_id'
 }
}

7.5.2.5 Composite Primary Keys
GORM supports the concept of composite identifiers (identifiers composed from 2 or more properties). It is not an approach we recommend, but is
available to you if you need it:

http://docs.jboss.org/hibernate/core/3.6/reference/en-US/html/mapping.html#mapping-declaration-id-generator

170

import org.apache.commons.lang.builder.HashCodeBuilder

class Person Serializable {implements

 firstNameString
 lastNameString

 equals(other) {boolean
 (!(other Person)) {if instanceof
 return false
 }

other.firstName == firstName && other.lastName == lastName
 }

 hashCode() {int
 def builder = HashCodeBuilder()new
 builder.append firstName
 builder.append lastName
 builder.toHashCode()
 }

 mapping = {static
 id composite: ['firstName', 'lastName']
 }
}

The above will create a composite id of the and properties of the Person class. To retrieve an instance by id you use a prototypefirstName lastName
of the object itself:

def p = Person.get(Person(firstName: , lastName:))new "Fred" "Flintstone"
println p.firstName

Domain classes mapped with composite primary keys must implement the interface and override the and Serializable equals hashCode
methods, using the properties in the composite key for the calculations. The example above uses a for convenience but it's fine toHashCodeBuilder
implement it yourself.

Another important consideration when using composite primary keys is associations. If for example you have a many-to-one association where the foreign
keys are stored in the associated table then 2 columns will be present in the associated table.

For example consider the following domain class:

class Address {
 Person person
}

171

In this case the table will have an additional two columns called and . If you wish the changeaddress person_first_name person_last_name
the mapping of these columns then you can do so using the following technique:

class Address {
 Person person
 mapping = {static
 columns {
 person {
 column name: "FirstName"
 column name: "LastName"
 }
 }
 }
}

7.5.2.6 Database Indices
To get the best performance out of your queries it is often necessary to tailor the table index definitions. How you tailor them is domain specific and a
matter of monitoring usage patterns of your queries. With GORM's DSL you can specify which columns are used in which indexes:

class Person {
 firstNameString
 addressString
 mapping = {static
 table 'people'
 version false
 id column: 'person_id'
 firstName column: 'First_Name', index: 'Name_Idx'
 address column: 'Address', index: 'Name_Idx,Address_Index'
 }
}

Note that you cannot have any spaces in the value of the attribute; in this example will cause anindex index:'Name_Idx, Address_Index'
error.

7.5.2.7 Optimistic Locking and Versioning
As discussed in the section on , by default GORM uses optimistic locking and automatically injects a Optimistic and Pessimistic Locking version
property into every class which is in turn mapped to a column at the database level.version

If you're mapping to a legacy schema that doesn't have version columns (or there's some other reason why you don't want/need this feature) you can
disable this with the method:version

172

class Person {
 …
 mapping = {static
 table 'people'
 version false
 }
}

If you disable optimistic locking you are essentially on your own with regards to concurrent updates and are open to the
risk of users losing data (due to data overriding) unless you use pessimistic locking

Version columns types

By default Grails maps the property as a that gets incremented by one each time an instance is updated. But Hibernate also supportsversion Long
using a , for example:Timestamp

import java.sql.Timestamp

class Person {

…
 Timestamp version

 mapping = {static
 table 'people'
 }
}

There's a slight risk that two updates occurring at nearly the same time on a fast server can end up with the same timestamp value but this risk is very low.
One benefit of using a instead of a is that you combine the optimistic locking and last-updated semantics into a single column. Timestamp Long

7.5.2.8 Eager and Lazy Fetching

Lazy Collections

As discussed in the section on , GORM collections are lazily loaded by default but you can change this behaviour with the ORMEager and Lazy fetching
DSL. There are several options available to you, but the most common ones are:

lazy: false

fetch: 'join'

and they're used like this:

173

1.

2.

class Person {

 firstNameString
 Pet pet

 hasMany = [addresses: Address]static

 mapping = {static
 addresses lazy: false
 pet fetch: 'join'
 }
}

class Address {
 streetString
 postCodeString
}

class Pet {
 nameString
}

The first option, , ensures that when a instance is loaded, its collection is loaded at the same time with a secondlazy: false Person addresses
SELECT. The second option is basically the same, except the collection is loaded with a JOIN rather than another SELECT. Typically you want to reduce
the number of queries, so is the more appropriate option. On the other hand, it could feasibly be the more expensive approach if yourfetch: 'join'
domain model and data result in more and larger results than would otherwise be necessary.

For more advanced users, the other settings available are:

batchSize: N

lazy: false, batchSize: N

where N is an integer. These let you fetch results in batches, with one query per batch. As a simple example, consider this mapping for :Person

174

class Person {

 firstNameString
 Pet pet

 mapping = {static
 pet batchSize: 5
 }
}

If a query returns multiple instances, then when we access the first property, Hibernate will fetch that plus the four next ones. You canPerson pet Pet
get the same behaviour with eager loading by combining with the option. You can find out more about these options in the batchSize lazy: false

 and this . Note that ORM DSL does not currently support the "subselect" fetching strategy.Hibernate user guide primer on fetching strategies

Lazy Single-Ended Associations

In GORM, one-to-one and many-to-one associations are by default lazy. Non-lazy single ended associations can be problematic when you load many
entities because each non-lazy association will result in an extra SELECT statement. If the associated entities also have non-lazy associations, the number
of queries grows significantly!

Use the same technique as for lazy collections to make a one-to-one or many-to-one association non-lazy/eager:

class Person {
 firstNameString
}

class Address {

 streetString
 postCodeString

 belongsTo = [person: Person]static

 mapping = {static
 person lazy: false
 }
}

Here we configure GORM to load the associated instance (through the property) whenever an is loaded.Person person Address

Lazy Single-Ended Associations and Proxies

http://docs.jboss.org/hibernate/core/3.6/reference/en-US/html/performance.html#performance-fetching
http://community.jboss.org/wiki/AShortPrimerOnFetchingStrategies

175

Hibernate uses runtime-generated proxies to facilitate single-ended lazy associations; Hibernate dynamically subclasses the entity class to create the
proxy.

Consider the previous example but with a lazily-loaded association: Hibernate will set the property to a proxy that is a subclass of person person
. When you call any of the getters (except for the property) or setters on that proxy, Hibernate will load the entity from the database.Person id

Unfortunately this technique can produce surprising results. Consider the following example classes:

class Pet {
 nameString
}

class Dog Pet {extends
}

class Person {
 nameString
 Pet pet
}

and assume that we have a single instance with a as the . The following code will work as you would expect:Person Dog pet

def person = Person.get(1)
assert person.pet Doginstanceof
assert Pet.get(person.petId) Doginstanceof

But this won't:

176

def person = Person.get(1)
assert person.pet Doginstanceof
assert Pet.list()[0] Doginstanceof

The second assertion fails, and to add to the confusion, this will work:

assert Pet.list()[0] Doginstanceof

What's going on here? It's down to a combination of how proxies work and the guarantees that the Hibernate session makes. When you load the Person
instance, Hibernate creates a proxy for its relation and attaches it to the session. Once that happens, whenever you retrieve that instance with apet Pet
query, a , or the relation , Hibernate gives you the proxy.get() pet within the same session

Fortunately for us, GORM automatically unwraps the proxy when you use and , or when you directly access the relation. That meansget() findBy*()
you don't have to worry at all about proxies in the majority of cases. But GORM doesn't do that for objects returned with a query that returns a list, such as

 and . However, if Hibernate hasn't attached the proxy to the session, those queries will return the real instances - hence whylist() findAllBy*()
the last example works.

You can protect yourself to a degree from this problem by using the method by GORM:instanceOf

def person = Person.get(1)
assert Pet.list()[0].instanceOf(Dog)

However, it won't help here if casting is involved. For example, the following code will throw a because the first pet in the listClassCastException
is a proxy instance with a class that is neither nor a sub-class of :Dog Dog

def person = Person.get(1)
Dog pet = Pet.list()[0]

Of course, it's best not to use static types in this situation. If you use an untyped variable for the pet instead, you can access any properties or methodsDog
on the instance without any problems.

177

These days it's rare that you will come across this issue, but it's best to be aware of it just in case. At least you will know why such an error occurs and be
able to work around it.

7.5.2.9 Custom Cascade Behaviour
As described in the section on , the primary mechanism to control the way updates and deletes cascade from one association to anothercascading updates
is the static property.belongsTo

However, the ORM DSL gives you complete access to Hibernate's capabilities using the attribute.transitive persistence cascade

Valid settings for the cascade attribute include:

merge - merges the state of a detached association

save-update - cascades only saves and updates to an association

delete - cascades only deletes to an association

lock - useful if a pessimistic lock should be cascaded to its associations

refresh - cascades refreshes to an association

evict - cascades evictions (equivalent to in GORM) to associations if setdiscard()

all - cascade operations to associationsall

all-delete-orphan - Applies only to one-to-many associations and indicates that when a child is removed from an association then it should be
automatically deleted. Children are also deleted when the parent is.

It is advisable to read the section in the Hibernate documentation on to obtain a better understandingtransitive persistence
of the different cascade styles and recommendations for their usage

To specify the cascade attribute simply define one or more (comma-separated) of the aforementioned settings as its value:

class Person {

 firstNameString

 hasMany = [addresses: Address]static

 mapping = {static
 addresses cascade: "all-delete-orphan"
 }
}

http://docs.jboss.org/hibernate/core/3.6/reference/en-US/html/objectstate.html#objectstate-transitive
http://docs.jboss.org/hibernate/core/3.6/reference/en-US/html/objectstate.html#objectstate-transitive

178

class Address {
 streetString
 postCodeString
}

7.5.2.10 Custom Hibernate Types
You saw in an earlier section that you can use composition (with the property) to break a table into multiple objects. You can achieve aembedded
similar effect with Hibernate's custom user types. These are not domain classes themselves, but plain Java or Groovy classes. Each of these types also has
a corresponding "meta-type" class that implements .org.hibernate.usertype.UserType

The has some information on custom types, but here we will focus on how to map them in Grails. Let's start by taking a lookHibernate reference manual
at a simple domain class that uses an old-fashioned (pre-Java 1.5) type-safe enum class:

class Book {

 titleString
 authorString
 Rating rating

 mapping = {static
 rating type: RatingUserType
 }
}

All we have done is declare the field the enum type and set the property's type in the custom mapping to the corresponding rating UserType
implementation. That's all you have to do to start using your custom type. If you want, you can also use the other column settings such as "column" to
change the column name and "index" to add it to an index.

Custom types aren't limited to just a single column - they can be mapped to as many columns as you want. In such cases you explicitly define in the
mapping what columns to use, since Hibernate can only use the property name for a single column. Fortunately, Grails lets you map multiple columns to a
property using this syntax:

http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/usertype/UserType.html
http://docs.jboss.org/hibernate/core/3.6/reference/en-US/html/mapping.html#mapping-types-custom

179

class Book {

 titleString
 Name author
 Rating rating

 mapping = {static
 author type: NameUserType, {
 column name: "first_name"
 column name: "last_name"
 }
 rating type: RatingUserType
 }
}

The above example will create "first_name" and "last_name" columns for the property. You'll be pleased to know that you can also use some ofauthor
the normal column/property mapping attributes in the column definitions. For example:

column name: , index: , unique: "first_name" "my_idx" true

The column definitions do support the following attributes: , , , , and .not type cascade lazy cache joinTable

One thing to bear in mind with custom types is that they define the for the corresponding database columns. That helps take the burden ofSQL types
configuring them yourself, but what happens if you have a legacy database that uses a different SQL type for one of the columns? In that case, override
the column's SQL type using the attribute:sqlType

class Book {

 titleString
 Name author
 Rating rating

 mapping = {static
 author type: NameUserType, {
 column name: , sqlType: "first_name" "text"
 column name: , sqlType: "last_name" "text"
 }
 rating type: RatingUserType, sqlType: "text"
 }
}

Mind you, the SQL type you specify needs to still work with the custom type. So overriding a default of "varchar" with "text" is fine, but overriding "text"
with "yes_no" isn't going to work.

180

7.5.2.11 Derived Properties
A derived property is one that takes its value from a SQL expression, often but not necessarily based on the value of one or more other persistent
properties. Consider a Product class like this:

class Product {
 priceFloat
 taxRateFloat
 taxFloat
}

If the property is derived based on the value of and properties then is probably no need to persist the property. The SQL usedtax price taxRate tax
to derive the value of a derived property may be expressed in the ORM DSL like this:

class Product {
 priceFloat
 taxRateFloat
 taxFloat

 mapping = {static
 tax formula: 'PRICE * TAX_RATE'
 }
}

Note that the formula expressed in the ORM DSL is SQL so references to other properties should relate to the persistence model not the object model,
which is why the example refers to and instead of and .PRICE TAX_RATE price taxRate

With that in place, when a Product is retrieved with something like , the SQL that is generated to support that will look somethingProduct.get(42)
like this:

select
 product0_.id as id1_0_,
 product0_.version as version1_0_,
 product0_.price as price1_0_,
 product0_.tax_rate as tax4_1_0_,
 product0_.PRICE * product0_.TAX_RATE as formula1_0_
from
 product product0_
where
 product0_.id=?

181

Since the property is derived at runtime and not stored in the database it might seem that the same effect could be achieved by adding a method like tax
 to the class that simply returns the product of the and properties. With an approach like that you would give upgetTax() Product taxRate price

the ability query the database based on the value of the property. Using a derived property allows exactly that. To retrieve all objects thattax Product
have a value greater than 21.12 you could execute a query like this:tax

Product.findAllByTaxGreaterThan(21.12)

Derived properties may be referenced in the Criteria API:

Product.withCriteria {
 gt 'tax', 21.12f
}

The SQL that is generated to support either of those would look something like this:

select
 this_.id as id1_0_,
 this_.version as version1_0_,
 this_.price as price1_0_,
 this_.tax_rate as tax4_1_0_,
 this_.PRICE * this_.TAX_RATE as formula1_0_
from
 product this_
where
 this_.PRICE * this_.TAX_RATE>?

Because the value of a derived property is generated in the database and depends on the execution of SQL code, derived
properties may not have GORM constraints applied to them. If constraints are specified for a derived property, they will be
ignored.

7.5.2.12 Custom Naming Strategy
By default Grails uses Hibernate's to convert domain class Class and field names to SQL table and column names byImprovedNamingStrategy
converting from camel-cased Strings to ones that use underscores as word separators. You can customize these on a per-class basis in the mapping
closure but if there's a consistent pattern you can specify a different class to use.NamingStrategy

Configure the class name to be used in in the section, e.g.grails-app/conf/application.groovy hibernate

182

dataSource {
 pooled = true
 dbCreate = "create-drop"
 …
}

hibernate {
 cache.use_second_level_cache = true
 …
 naming_strategy = com.myco.myproj.CustomNamingStrategy
}

You can also specify the name of the class and it will be loaded for you:

hibernate {
 …
 naming_strategy = 'com.myco.myproj.CustomNamingStrategy'
}

A third option is to provide an instance if there is some configuration required beyond calling the default constructor:

hibernate {
 …
 def strategy = com.myco.myproj.CustomNamingStrategy()new
 // configure as needed
 naming_strategy = strategy
}

You can use an existing class or write your own, for example one that prefixes table names and column names:

183

package com.myco.myproj

 org.hibernate.cfg.ImprovedNamingStrategyimport
 org.hibernate.util.StringHelperimport

class CustomNamingStrategy ImprovedNamingStrategy {extends

 classToTableName(className) {String String
 + StringHelper.unqualify(className)"table_"
 }

 propertyToColumnName(propertyName) {String String
 + StringHelper.unqualify(propertyName)"col_"
 }
}

7.5.3 Default Sort Order
You can sort objects using query arguments such as those found in the method:list

def airports = Airport.list(sort:'name')

However, you can also declare the default sort order for a collection in the mapping:

class Airport {
 …
 mapping = {static
 sort "name"
 }
}

The above means that all collections of instances will by default be sorted by the airport name. If you also want to change the sort , useAirport order
this syntax:

184

class Airport {
 …
 mapping = {static
 sort name: "desc"
 }
}

Finally, you can configure sorting at the association level:

class Airport {
 …
 hasMany = [flights: Flight]static

 mapping = {static
 flights sort: 'number', order: 'desc'
 }
}

In this case, the collection will always be sorted in descending order of flight number.flights

These mappings will not work for default unidirectional one-to-many or many-to-many relationships because they involve
a join table. See for more details. Consider using a or queries with sort parameters to fetch the datathis issue SortedSet
you need.

7.6 Programmatic Transactions
Grails is built on Spring and uses Spring's Transaction abstraction for dealing with programmatic transactions. However, GORM classes have been
enhanced to make this simpler with the method. This method has a single parameter, a Closure, which has a single parameter which is awithTransaction
Spring instance.TransactionStatus

Here's an example of using in a controller methods:withTransaction

https://jira.grails.org/browse/GRAILS-4089
http://docs.spring.io/spring/docs/4.0.x/javadoc-api/org/springframework/transaction/TransactionStatus.html

185

def transferFunds() {
 Account.withTransaction { status ->
 def source = Account.get(params.from)
 def dest = Account.get(params.to)

def amount = params.amount.toInteger()
 (source.active) {if
 (dest.active) {if
 source.balance -= amount
 dest.amount += amount
 }
 {else
 status.setRollbackOnly()
 }
 }
 }
}

In this example we rollback the transaction if the destination account is not active. Also, if an unchecked or (but not a checked Exception Error
, even though Groovy doesn't require that you catch checked exceptions) is thrown during the process the transaction will automatically beException

rolled back.

You can also use "save points" to rollback a transaction to a particular point in time if you don't want to rollback the entire transaction. This can be
achieved through the use of Spring's interface.SavePointManager

The method deals with the begin/commit/rollback logic for you within the scope of the block. withTransaction

7.7 GORM and Constraints
Although constraints are covered in the section, it is important to mention them here as some of the constraints can affect the way in which theValidation
database schema is generated.

Where feasible, Grails uses a domain class's constraints to influence the database columns generated for the corresponding domain class properties.

Consider the following example. Suppose we have a domain model with the following properties:

String name
 descriptionString

By default, in MySQL, Grails would define these columns as

Column Data Type

name varchar(255)

description varchar(255)

http://docs.spring.io/spring/docs/4.0.x/javadoc-api/org/springframework/transaction/SavepointManager.html

186

But perhaps the business rules for this domain class state that a description can be up to 1000 characters in length. If that were the case, we would likely
define the column as follows we were creating the table with an SQL script.if

Column Data Type

description TEXT

Chances are we would also want to have some application-based validation to make sure we don't exceed that 1000 character limit we persist anybefore
records. In Grails, we achieve this validation with . We would add the following constraint declaration to the domain class.constraints

static constraints = {
 description maxSize: 1000
}

This constraint would provide both the application-based validation we want and it would also cause the schema to be generated as shown above. Below
is a description of the other constraints that influence schema generation.

Constraints Affecting String Properties

inList

maxSize

size

If either the or the constraint is defined, Grails sets the maximum column length based on the constraint value.maxSize size

In general, it's not advisable to use both constraints on the same domain class property. However, if both the constraint and the maxSize size
constraint are defined, then Grails sets the column length to the minimum of the constraint and the upper bound of the size constraint. (GrailsmaxSize
uses the minimum of the two, because any length that exceeds that minimum will result in a validation error.)

If the constraint is defined (and the and the constraints are not defined), then Grails sets the maximum column length based oninList maxSize size
the length of the longest string in the list of valid values. For example, given a list including values "Java", "Groovy", and "C++", Grails would set the
column length to 6 (i.e., the number of characters in the string "Groovy").

Constraints Affecting Numeric Properties

min

max

range

If the , , or constraint is defined, Grails attempts to set the column precision based on the constraint value. (The success of this attemptedmax min range
influence is largely dependent on how Hibernate interacts with the underlying DBMS.)

In general, it's not advisable to combine the pair / and constraints together on the same domain class property. However, if both of thesemin max range
constraints is defined, then Grails uses the minimum precision value from the constraints. (Grails uses the minimum of the two, because any length that
exceeds that minimum precision will result in a validation error.)

187

scale

If the scale constraint is defined, then Grails attempts to set the column based on the constraint value. This rule only applies to floating pointscale
numbers (i.e., , , , or subclasses of). Thejava.lang.Float java.Lang.Double java.lang.BigDecimal java.lang.BigDecimal
success of this attempted influence is largely dependent on how Hibernate interacts with the underlying DBMS.

The constraints define the minimum/maximum numeric values, and Grails derives the maximum number of digits for use in the precision. Keep in mind
that specifying only one of / constraints will not affect schema generation (since there could be large negative value of property with max:100,min max
for example), unless the specified constraint value requires more digits than default Hibernate column precision is (19 at the moment). For example:

someFloatValue max: 1000000, scale: 3

would yield:

someFloatValue DECIMAL(19, 3) // precision is default

but

someFloatValue max: 12345678901234567890, scale: 5

would yield:

someFloatValue DECIMAL(25, 5) // precision = digits in max + scale

and

188

someFloatValue max: 100, min: -100000

would yield:

someFloatValue DECIMAL(8, 2) // precision = digits in min + scaledefault

189

8 The Web Layer

8.1 Controllers
A controller handles requests and creates or prepares the response. A controller can generate the response directly or delegate to a view. To create a
controller, simply create a class whose name ends with in the directory (in a subdirectory if it's in aController grails-app/controllers
package).

The default configuration ensures that the first part of your controller name is mapped to a URI and each action defined within yourURL Mapping
controller maps to URIs within the controller name URI.

8.1.1 Understanding Controllers and Actions

Creating a controller

Controllers can be created with the or command. For example try running the following command from the root of acreate-controller generate-controller
Grails project:

grails create-controller book

The command will create a controller at the location :grails-app/controllers/myapp/BookController.groovy

package myapp

class BookController {

def index() { }
}

where "myapp" will be the name of your application, the default package name if one isn't specified.

 by default maps to the /book URI (relative to your application root).BookController

The and commands are just for convenience and you can just ascreate-controller generate-controller
easily create controllers using your favorite text editor or IDE

Creating Actions

A controller can have multiple public action methods; each one maps to a URI:

190

class BookController {

def list() {

// controller logicdo
 // create model

 modelreturn
 }
}

This example maps to the URI by default thanks to the property being named ./book/list list

Public Methods as Actions

In earlier versions of Grails actions were implemented with Closures. This is still supported, but the preferred approach is to use methods.

Leveraging methods instead of Closure properties has some advantages:

Memory efficient

Allow use of stateless controllers (scope)singleton

You can override actions from subclasses and call the overridden superclass method with super.actionName()

Methods can be intercepted with standard proxying mechanisms, something that is complicated to do with Closures since they're fields.

If you prefer the Closure syntax or have older controller classes created in earlier versions of Grails and still want the advantages of using methods, you
can set the property to true in :grails.compile.artefacts.closures.convert application.yml

grails:
 compile:
 artefacts:
 closures:
 convert: true

and a compile-time AST transformation will convert your Closures to methods in the generated bytecode.

If a controller class extends some other class which is not defined under the directory,grails-app/controllers/
methods inherited from that class are not converted to controller actions. If the intent is to expose those inherited methods
as controller actions the methods may be overridden in the subclass and the subclass method may invoke the method in the
super class.

The Default Action

191

A controller has the concept of a default URI that maps to the root URI of the controller, for example for . The action that is/book BookController
called when the default URI is requested is dictated by the following rules:

If there is only one action, it's the default

If you have an action named , it's the defaultindex

Alternatively you can set it explicitly with the property:defaultAction

static defaultAction = "list"

8.1.2 Controllers and Scopes

Available Scopes

Scopes are hash-like objects where you can store variables. The following scopes are available to controllers:

servletContext - Also known as application scope, this scope lets you share state across the entire web application. The servletContext is an instance
of ServletContext

session - The session allows associating state with a given user and typically uses cookies to associate a session with a client. The session object is an
instance of HttpSession

request - The request object allows the storage of objects for the current request only. The request object is an instance of HttpServletRequest

params - Mutable map of incoming request query string or POST parameters

flash - See below

Accessing Scopes

Scopes can be accessed using the variable names above in combination with Groovy's array index operator, even on classes provided by the Servlet API
such as the :HttpServletRequest

class BookController {
 def find() {
 def findBy = params[]"findBy"
 def appContext = request[]"foo"
 def loggedUser = session[]"logged_user"
 }
}

You can also access values within scopes using the de-reference operator, making the syntax even more clear:

http://download.oracle.com/javaee/1.4/api/javax/servlet/ServletContext.html
http://download.oracle.com/javaee/1.4/api/javax/servlet/http/HttpSession.html
http://download.oracle.com/javaee/1.4/api/javax/servlet/http/HttpServletRequest.html
http://download.oracle.com/javaee/1.4/api/javax/servlet/http/HttpServletRequest.html

192

class BookController {
 def find() {
 def findBy = params.findBy
 def appContext = request.foo
 def loggedUser = session.logged_user
 }
}

This is one of the ways that Grails unifies access to the different scopes.

Using Flash Scope

Grails supports the concept of scope as a temporary store to make attributes available for this request and the next request only. Afterwards theflash
attributes are cleared. This is useful for setting a message directly before redirecting, for example:

def delete() {
 def b = Book.get(params.id)
 (!b) {if
 flash.message = "User not found id ${params.id}"for
 redirect(action:list)
 }
 … // remaining code
}

When the action is requested, the value will be in scope and can be used to display an information message. It will be removed from the list message
 scope after this second request.flash

Note that the attribute name can be anything you want, and the values are often strings used to display messages, but can be any object type.

Scoped Controllers

Newly created applications have the property set to a value of "singleton" in . Yougrails.controllers.defaultScope application.yml
may change this value to any of the supported scopes listed below. If the property is not assigned a value at all, controllers will default to "prototype"
scope.

Supported controller scopes are:

prototype (default) - A new controller will be created for each request (recommended for actions as Closure properties)

session - One controller is created for the scope of a user session

singleton - Only one instance of the controller ever exists (recommended for actions as methods)

To enable one of the scopes, add a static property to your class with one of the valid scope values listed above, for examplescope

193

static scope = "singleton"

You can define the default strategy in with the key, for example:application.yml grails.controllers.defaultScope

grails:
 controllers:
 defaultScope: singleton

Use scoped controllers wisely. For instance, we don't recommend having any properties in a singleton-scoped controller
since they will be shared for requests.all

8.1.3 Models and Views

Returning the Model

A model is a Map that the view uses when rendering. The keys within that Map correspond to variable names accessible by the view. There are a couple
of ways to return a model. First, you can explicitly return a Map instance:

def show() {
 [book: Book.get(params.id)]
}

The above does reflect what you should use with the scaffolding views - see the for more details.not scaffolding section

A more advanced approach is to return an instance of the Spring class:ModelAndView

http://docs.spring.io/spring/docs/4.0.x/javadoc-api/org/springframework/web/servlet/ModelAndView.html

194

import org.springframework.web.servlet.ModelAndView

def index() {
 // get some books just the index page, perhaps your favoritesfor
 def favoriteBooks = ...

// forward to the list view to show them
 ModelAndView(, [bookList : favoriteBooks])return new "/book/list"
}

One thing to bear in mind is that certain variable names can not be used in your model:

attributes

application

Currently, no error will be reported if you do use them, but this will hopefully change in a future version of Grails.

Selecting the View

In both of the previous two examples there was no code that specified which to render. So how does Grails know which one to pick? The answer liesview
in the conventions. Grails will look for a view at the location for this action:grails-app/views/book/show.gsp show

class BookController {
 def show() {
 [book: Book.get(params.id)]
 }
}

To render a different view, use the method:render

def show() {
 def map = [book: Book.get(params.id)]
 render(view: , model: map)"display"
}

In this case Grails will attempt to render a view at the location . Notice that Grails automatically qualifiesgrails-app/views/book/display.gsp
the view location with the directory of the directory. This is convenient, but to access shared views you need instead youbook grails-app/views
can use an absolute path instead of a relative one:

195

def show() {
 def map = [book: Book.get(params.id)]
 render(view: , model: map)"/shared/display"
}

In this case Grails will attempt to render a view at the location .grails-app/views/shared/display.gsp

Grails also supports JSPs as views, so if a GSP isn't found in the expected location but a JSP is, it will be used instead.

Selecting Views For Namespaced Controllers

If a controller defines a namespace for itself with the property that will affect the root directory in which Grails will look for views which arenamespace
specified with a relative path. The default root directory for views rendered by a namespaced controller is grails-app/views/<namespace

. If the view is not found in the namespaced directory then Grails will fallback to looking for the view in thename>/<controller name>/
non-namespaced directory.

See the example below.

class ReportingController {
 namespace = 'business'static

def humanResources() {
 // This will render grails-app/views/business/reporting/humanResources.gsp
 // it exists.if

// If grails-app/views/business/reporting/humanResources.gsp does not
 // exist the fallback will be grails-app/views/reporting/humanResources.gsp.

// The namespaced GSP will take precedence over the non-namespaced GSP.

[numberOfEmployees: 9]
 }

 def accountsReceivable() {
 // This will render grails-app/views/business/reporting/accounting.gsp
 // it exists.if

// If grails-app/views/business/reporting/accounting.gsp does not
 // exist the fallback will be grails-app/views/reporting/accounting.gsp.

// The namespaced GSP will take precedence over the non-namespaced GSP.

render view: 'numberCrunch', model: [numberOfEmployees: 13]
 }
}

Rendering a Response

Sometimes it's easier (for example with Ajax applications) to render snippets of text or code to the response directly from the controller. For this, the
highly flexible method can be used:render

196

render "Hello World!"

The above code writes the text "Hello World!" to the response. Other examples include:

// write some markup
render {
 (b in books) {for
 div(id: b.id, b.title)
 }
}

// render a specific view
render(view: 'show')

// render a template each item in a collectionfor
render(template: 'book_template', collection: Book.list())

// render some text with encoding and content type
render(text: , contentType: , encoding:)"<xml>some xml</xml>" "text/xml" "UTF-8"

If you plan on using Groovy's to generate HTML for use with the method be careful of naming clashes between HTMLMarkupBuilder render
elements and Grails tags, for example:

197

import groovy.xml.MarkupBuilder
…
def login() {
 def writer = StringWriter()new
 def builder = MarkupBuilder(writer)new
 builder.html {
 head {
 title 'Log in'
 }
 body {
 h1 'Hello'
 form {
 }
 }
 }

def html = writer.toString()
 render html
}

This will actually (which will return some text that will be ignored by the). To correctly output a element,call the form tag MarkupBuilder <form>
use the following:

def login() {
 // …
 body {
 h1 'Hello'
 builder.form {
 }
 }
 // …
}

8.1.4 Redirects and Chaining

Redirects

Actions can be redirected using the controller method:redirect

198

class OverviewController {

def login() {}

def find() {
 (!session.user)if
 redirect(action: 'login')
 return
 }
 …
 }
}

Internally the method uses the object's method.redirect HttpServletResponse sendRedirect

The method expects one of:redirect

Another closure within the same controller class:

// Call the login action within the same class
redirect(action: login)

The name of an action (and controller name if the redirect isn't to an action in the current controller):

// Also redirects to the index action in the home controller
redirect(controller: 'home', action: 'index')

A URI for a resource relative the application context path:

// Redirect to an explicit URI
redirect(uri:)"/login.html"

Or a full URL:

http://download.oracle.com/javaee/1.4/api/javax/servlet/http/HttpServletResponse.html

199

// Redirect to a URL
redirect(url:)"http://grails.org"

Parameters can optionally be passed from one action to the next using the argument of the method:params

redirect(action: 'myaction', params: [myparam:])"myvalue"

These parameters are made available through the dynamic property that accesses request parameters. If a parameter is specified with the sameparams
name as a request parameter, the request parameter is overridden and the controller parameter is used.

Since the object is a Map, you can use it to pass the current request parameters from one action to the next:params

redirect(action: , params: params)"next"

Finally, you can also include a fragment in the target URI:

redirect(controller: , action: , fragment:)"test" "show" "profile"

which will (depending on the URL mappings) redirect to something like "/myapp/test/show#profile".

Chaining

Actions can also be chained. Chaining allows the model to be retained from one action to the next. For example calling the action in this action:first

200

class ExampleChainController {

def first() {
 chain(action: second, model: [one: 1])
 }

def second () {
 chain(action: third, model: [two: 2])
 }

def third() {
 [three: 3])
 }
}

results in the model:

[one: 1, two: 2, three: 3]

The model can be accessed in subsequent controller actions in the chain using the map. This dynamic property only exists in actionschainModel
following the call to the method:chain

class ChainController {

def nextInChain() {
 def model = chainModel.myModel
 …
 }
}

Like the method you can also pass parameters to the method:redirect chain

chain(action: , model: [one: 1], params: [myparam:])"action1" "param1"

8.1.5 Data Binding

201

Data binding is the act of "binding" incoming request parameters onto the properties of an object or an entire graph of objects. Data binding should deal
with all necessary type conversion since request parameters, which are typically delivered by a form submission, are always strings whilst the properties
of a Groovy or Java object may well not be.

Map Based Binding

The data binder is capable of converting and assigning values in a Map to properties of an object. The binder will associate entries in the Map to
properties of the object using the keys in the Map that have values which correspond to property names on the object. The following code demonstrates
the basics:

// grails-app/domain/Person.groovy
class Person {
 firstNameString
 lastNameString
 ageInteger
}

def bindingMap = [firstName: 'Peter', lastName: 'Gabriel', age: 63]

def person = Person(bindingMap)new

assert person.firstName == 'Peter'
assert person.lastName == 'Gabriel'
assert person.age == 63

To update properties of a domain object you may assign a Map to the property of the domain class:properties

def bindingMap = [firstName: 'Peter', lastName: 'Gabriel', age: 63]

def person = Person.get(someId)
person.properties = bindingMap

assert person.firstName == 'Peter'
assert person.lastName == 'Gabriel'
assert person.age == 63

The binder can populate a full graph of objects using Maps of Maps.

202

class Person {
 firstNameString
 lastNameString
 ageInteger
 Address homeAddress
}

class Address {
 countyString
 countryString
}

def bindingMap = [firstName: 'Peter', lastName: 'Gabriel', age: 63, homeAddress: [county: 'Surrey', country:
'England']]

def person = Person(bindingMap)new

assert person.firstName == 'Peter'
assert person.lastName == 'Gabriel'
assert person.age == 63
assert person.homeAddress.county == 'Surrey'
assert person.homeAddress.country == 'England'

Binding To Collections And Maps

The data binder can populate and update Collections and Maps. The following code shows a simple example of populating a of objects in a domainList
class:

class Band {
 nameString
 hasMany = [albums: Album]static
 List albums
}

class Album {
 titleString
 numberOfTracksInteger
}

203

def bindingMap = [name: 'Genesis',
 'albums[0]': [title: 'Foxtrot', numberOfTracks: 6],
 'albums[1]': [title: 'Nursery Cryme', numberOfTracks: 7]]

def band = Band(bindingMap)new

assert band.name == 'Genesis'
assert band.albums.size() == 2
assert band.albums[0].title == 'Foxtrot'
assert band.albums[0].numberOfTracks == 6
assert band.albums[1].title == 'Nursery Cryme'
assert band.albums[1].numberOfTracks == 7

That code would work in the same way if were an array instead of a .albums List

Note that when binding to a the structure of the being bound to the is the same as that of a being bound to a but since a isSet Map Set Map List Set
unordered, the indexes don't necessarily correspond to the order of elements in the . In the code example above, if were a instead of a Set albums Set

, the could look exactly the same but 'Foxtrot' might be the first album in the or it might be the second. When updating existingList bindingMap Set
elements in a the being assigned to the must have elements in it which represent the element in the being updated, as in theSet Map Set id Set
following example:

/*
 * The value of the indexes 0 and 1 in albums[0] and albums[1] are arbitrary
 * values that can be anything as as they are unique within the Map.long
 * They not correspond to the order of elements in albums because albumsdo
 * is a Set.
 */
def bindingMap = ['albums[0]': [id: 9, title: 'The Lamb Lies Down On Broadway']
 'albums[1]': [id: 4, title: 'Selling England By The Pound']]

def band = Band.get(someBandId)

/*
 * This will find the Album in albums that has an id of 9 and will set its title
 * to 'The Lamb Lies Down On Broadway' and will find the Album in albums that has
 * an id of 4 and set its title to 'Selling England By The Pound'. In both
 * cases the Album cannot be found in albums then the album will be retrievedif
 * from the database by id, the Album will be added to albums and will be updated
 * with the values described above. If a Album with the specified id cannot be
 * found in the database, then a binding error will be created and associated
 * with the band object. More on binding errors later.
 */
band.properties = bindingMap

When binding to a the structure of the binding is the same as the structure of a used for binding to a or a and the index inside ofMap Map Map List Set
square brackets corresponds to the key in the being bound to. See the following code:Map

204

class Album {
 titleString
 hasMany = [players: Player]static
 Map players
}

class Player {
 nameString
}

def bindingMap = [title: 'The Lamb Lies Down On Broadway',
 'players[guitar]': [name: 'Steve Hackett'],
 'players[vocals]': [name: 'Peter Gabriel'],
 'players[keyboards]': [name: 'Tony Banks']]

def album = Album(bindingMap)new

assert album.title == 'The Lamb Lies Down On Broadway'
assert album.players.size() == 3
assert album.players.guitar.name == 'Steve Hackett'
assert album.players.vocals.name == 'Peter Gabriel'
assert album.players.keyboards.name == 'Tony Banks'

When updating an existing , if the key specified in the binding does not exist in the being bound to then a new value will be created andMap Map Map
added to the with the specified key as in the following example:Map

205

def bindingMap = [title: 'The Lamb Lies Down On Broadway',
 'players[guitar]': [name: 'Steve Hackett'],
 'players[vocals]': [name: 'Peter Gabriel']
 'players[keyboards]': [name: 'Tony Banks']]

def album = Album(bindingMap)new

assert album.title == 'The Lamb Lies Down On Broadway'
assert album.players.size() == 3
assert album.players.guitar == 'Steve Hackett'
assert album.players.vocals == 'Peter Gabriel'
assert album.players.keyboards == 'Tony Banks'

def updatedBindingMap = ['players[drums]': [name: 'Phil Collins'],
 'players[keyboards]': [name: 'Anthony George Banks']]

album.properties = updatedBindingMap

assert album.title == 'The Lamb Lies Down On Broadway'
assert album.players.size() == 4
assert album.players.guitar.name == 'Steve Hackett'
assert album.players.vocals.name == 'Peter Gabriel'
assert album.players.keyboards.name == 'Anthony George Banks'
assert album.players.drums.name == 'Phil Collins'

Binding Request Data to the Model

The object that is available in a controller has special behavior that helps convert dotted request parameter names into nested Maps that the dataparams
binder can work with. For example, if a request includes request parameters named and person.homeAddress.country

 with values 'USA' and 'St. Louis' respectively, would include entries like these:person.homeAddress.city params

[person: [homeAddress: [country: 'USA', city: 'St. Louis']]]

There are two ways to bind request parameters onto the properties of a domain class. The first involves using a domain classes' Map constructor:

def save() {
 def b = Book(params)new
 b.save()
}

The data binding happens within the code . By passing the object to the domain class constructor Grails automaticallynew Book(params) params
recognizes that you are trying to bind from request parameters. So if we had an incoming request like:

206

/book/save?title=The%20Stand&author=Stephen%20King

Then the and request parameters would automatically be set on the domain class. You can use the property to perform datatitle author properties
binding onto an existing instance:

def save() {
 def b = Book.get(params.id)
 b.properties = params
 b.save()
}

This has the same effect as using the implicit constructor.

When binding an empty String (a String with no characters in it, not even spaces), the data binder will convert the empty String to null. This simplifies the
most common case where the intent is to treat an empty form field as having the value null since there isn't a way to actually submit a null as a request
parameter. When this behavior is not desirable the application may assign the value directly.

The mass property binding mechanism will by default automatically trim all Strings at binding time. To disable this behavior set the
 property to false in .grails.databinding.trimStrings grails-app/conf/application.groovy

// the value is default true
grails.databinding.trimStrings = false

// ...

The mass property binding mechanism will by default automatically convert all empty Strings to null at binding time. To disable this behavior set the
 property to false in .grails.databinding.convertEmptyStringsToNull grials-app/conf/application.groovy

// the value is default true
grails.databinding.convertEmptyStringsToNull = false

// ...

207

The order of events is that the String trimming happens and then null conversion happens so if is and trimStrings true
 is , not only will empty Strings be converted to null but also blank Strings. A blank String is any String suchconvertEmptyStringsToNull true

that the method returns an empty String.trim()

These forms of data binding in Grails are very convenient, but also indiscriminate. In other words, they will bind all
non-transient, typed instance properties of the target object, including ones that you may not want bound. Just because the
form in your UI doesn't submit all the properties, an attacker can still send malign data via a raw HTTP request.
Fortunately, Grails also makes it easy to protect against such attacks - see the section titled "Data Binding and Security
concerns" for more information.

Data binding and Single-ended Associations

If you have a or association you can use Grails' data binding capability to update these relationships too. For example ifone-to-one many-to-one
you have an incoming request such as:

/book/save?author.id=20

Grails will automatically detect the suffix on the request parameter and look up the instance for the given id when doing data binding such.id Author
as:

def b = Book(params)new

An association property can be set to by passing the literal "null". For example:null String

/book/save?author.id=null

Data Binding and Many-ended Associations

If you have a one-to-many or many-to-many association there are different techniques for data binding depending of the association type.

If you have a based association (the default for a) then the simplest way to populate an association is to send a list of identifiers. ForSet hasMany
example consider the usage of below:<g:select>

208

<g:select name="books"
 from="${Book.list()}"
 size= multiple= optionKey="5" "yes" "id"
 value= />"${author?.books}"

This produces a select box that lets you select multiple values. In this case if you submit the form Grails will automatically use the identifiers from the
select box to populate the association.books

However, if you have a scenario where you want to update the properties of the associated objects the this technique won't work. Instead you use the
subscript operator:

<g:textField name= value= />"books[0].title" "the Stand"
<g:textField name= value= />"books[1].title" "the Shining"

However, with based association it is critical that you render the mark-up in the same order that you plan to do the update in. This is because a Set Set
has no concept of order, so although we're referring to and it is not guaranteed that the order of the association will be correct on thebooks0 books1
server side unless you apply some explicit sorting yourself.

This is not a problem if you use based associations, since a has a defined order and an index you can refer to. This is also true of basedList List Map
associations.

Note also that if the association you are binding to has a size of two and you refer to an element that is outside the size of association:

<g:textField name= value= />"books[0].title" "the Stand"
<g:textField name= value= />"books[1].title" "the Shining"
<g:textField name= value= />"books[2].title" "Red Madder"

Then Grails will automatically create a new instance for you at the defined position.

You can bind existing instances of the associated type to a using the same syntax as you would use with a single-ended association. ForList .id
example:

209

<g:select name= from="books[0].id" "${bookList}"
 value= />"${author?.books[0]?.id}"

<g:select name= from="books[1].id" "${bookList}"
 value= />"${author?.books[1]?.id}"

<g:select name= from="books[2].id" "${bookList}"
 value= />"${author?.books[2]?.id}"

Would allow individual entries in the to be selected separately.books List

Entries at particular indexes can be removed in the same way too. For example:

<g:select name="books[0].id"
 from="${Book.list()}"
 value="${author?.books[0]?.id}"
 noSelection= />"['null': '']"

Will render a select box that will remove the association at if the empty option is chosen.books0

Binding to a property works the same way except that the list index in the parameter name is replaced by the map key:Map

<g:select name="images[cover].id"
 from="${Image.list()}"
 value="${book?.images[cover]?.id}"
 noSelection= />"['null': '']"

This would bind the selected image into the property under a key of .Map images "cover"

When binding to Maps, Arrays and Collections the data binder will automatically grow the size of the collections as necessary.

The default limit to how large the binder will grow a collection is 256. If the data binder encounters an entry that requires
the collection be grown beyond that limit, the entry is ignored. The limit may be configured by assigning a value to the

 property in .grails.databinding.autoGrowCollectionLimit application.groovy

210

// grails-app/conf/application.groovy

// the value is 256default
grails.databinding.autoGrowCollectionLimit = 128

// ...

Data binding with Multiple domain classes

It is possible to bind data to multiple domain objects from the object.params

For example so you have an incoming request to:

/book/save?book.title=The%20Stand&author.name=Stephen%20King

You'll notice the difference with the above request is that each parameter has a prefix such as or which is used to isolate whichauthor. book.
parameters belong to which type. Grails' object is like a multi-dimensional hash and you can index into it to isolate only a subset of theparams
parameters to bind.

def b = Book(params.book)new

Notice how we use the prefix before the first dot of the parameter to isolate only parameters below this level to bind. We could do thebook.title
same with an domain class:Author

def a = Author(params.author)new

Data Binding and Action Arguments

211

Controller action arguments are subject to request parameter data binding. There are 2 categories of controller action arguments. The first category is
command objects. Complex types are treated as command objects. See the section of the user guide for details. The other category isCommand Objects
basic object types. Supported types are the 8 primitives, their corresponding type wrappers and . The default behavior is to map requestjava.lang.String
parameters to action arguments by name:

class AccountingController {

// accountNumber will be initialized with the value of params.accountNumber
 // accountType will be initialized with params.accountType
 def displayInvoice(accountNumber, accountType) {String int
 // …
 }
}

For primitive arguments and arguments which are instances of any of the primitive type wrapper classes a type conversion has to be carried out before the
request parameter value can be bound to the action argument. The type conversion happens automatically. In a case like the example shown above, the

 request parameter has to be converted to an . If type conversion fails for any reason, the argument will have its defaultparams.accountType int
value per normal Java behavior (null for type wrapper references, false for booleans and zero for numbers) and a corresponding error will be added to the

 property of the defining controller.errors

/accounting/displayInvoice?accountNumber=B59786&accountType=bogusValue

Since "bogusValue" cannot be converted to type int, the value of accountType will be zero, the controller's will be true, theerrors.hasErrors()
controller's will be equal to 1 and the controller's will contain theerrors.errorCount errors.getFieldError('accountType')
corresponding error.

If the argument name does not match the name of the request parameter then the annotation may be applied to@grails.web.RequestParameter
an argument to express the name of the request parameter which should be bound to that argument:

import grails.web.RequestParameter

class AccountingController {

// mainAccountNumber will be initialized with the value of params.accountNumber
 // accountType will be initialized with params.accountType
 def displayInvoice(@RequestParameter('accountNumber') mainAccountNumber, accountType) {String int
 // …
 }
}

Data binding and type conversion errors

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

212

Sometimes when performing data binding it is not possible to convert a particular String into a particular target type. This results in a type conversion
error. Grails will retain type conversion errors inside the property of a Grails domain class. For example:errors

class Book {
 …
 URL publisherURL
}

Here we have a domain class that uses the class to represent URLs. Given an incoming request such as:Book java.net.URL

/book/save?publisherURL=a-bad-url

it is not possible to bind the string to the property as a type mismatch error occurs. You can check for these like this:a-bad-url publisherURL

def b = Book(params)new

 (b.hasErrors()) {if
 println +"The value ${b.errors.getFieldError('publisherURL').rejectedValue}"
 " is not a valid URL!"
}

Although we have not yet covered error codes (for more information see the section on), for type conversion errors you would want a messageValidation
from the file to use for the error. You can use a generic error message handler such as:grails-app/i18n/messages.properties

typeMismatch.java.net.URL=The field {0} is not a valid URL

Or a more specific one:

213

typeMismatch.Book.publisherURL=The publisher URL you specified is not a valid URL

The BindUsing Annotation

The annotation may be used to define a custom binding mechanism for a particular field in a class. Any time data binding is being applied toBindUsing
the field the closure value of the annotation will be invoked with 2 arguments. The first argument is the object that data binding is being applied to and the
second argument is which is the data source for the data binding. The value returned from the closure will be bound to the property.DataBindingSource
The following example would result in the upper case version of the value in the source being applied to the field during data binding.name name

import org.grails.databinding.BindUsing

class SomeClass {
 @BindUsing({obj, source ->

//source is DataSourceBinding which is similar to a Map
 //and defines getAt operation but source.name cannot be used here.
 //In order to get name from source use getAt instead as shown below.

source['name']?.toUpperCase()
 })
 nameString
}

Note that data binding is only possible when the name of the request parameter matches with the field name in the class.
Here, from request parameters matches with from .name name SomeClass

The annotation may be used to define a custom binding mechanism for all of the fields on a particular class. When the annotation is applied toBindUsing
a class, the value assigned to the annotation should be a class which implements the interface. An instance of that class will be used anyBindingHelper
time a value is bound to a property in the class that this annotation has been applied to.

@BindUsing(SomeClassWhichImplementsBindingHelper)
class SomeClass {
 somePropertyString
 someOtherPropertyInteger
}

Custom Data Converters

http://grails.github.io/grails-doc/3.0.x/api/org/grails/databinding/BindUsing.html
http://grails.github.io/grails-doc/3.0.x/api/org/grails/databinding/DataBindingSource.html
http://grails.github.io/grails-doc/3.0.x/api/org/grails/databinding/BindUsing.html
http://grails.github.io/grails-doc/3.0.x/api/org/grails/databinding/BindingHelper.html

214

The binder will do a lot of type conversion automatically. Some applications may want to define their own mechanism for converting values and a simple
way to do this is to write a class which implements and register an instance of that class as a bean in the Spring application context.ValueConverter

package com.myapp.converters

 org.grails.databinding.converters.ValueConverterimport

/**
 * A custom converter which will convert of theString
 * form 'city:state' into an Address object.
 */
class AddressValueConverter ValueConverter {implements

 canConvert(value) {boolean
 value instanceof String
 }

def convert(value) {
 def pieces = value.split(':')
 com.myapp.Address(city: pieces[0], state: pieces[1])new
 }

<?> getTargetType() {Class
 com.myapp.Address
 }
}

An instance of that class needs to be registered as a bean in the Spring application context. The bean name is not important. All beans that implemented
ValueConverter will be automatically plugged in to the data binding process.

// grails-app/conf/spring/resources.groovy

beans = {

addressConverter com.myapp.converters.AddressValueConverter

// ...

}

http://grails.github.io/grails-doc/3.0.x/api/org/grails/databinding/converters/ValueConverter.html

215

class Person {
 firstNameString
 Address homeAddress
}

class Address {
 cityString
 stateString
}

def person = Person()new
person.properties = [firstName: 'Jeff', homeAddress:]"O'Fallon:Missouri"
assert person.firstName == 'Jeff'
assert person.homeAddress.city = "O'Fallon"
assert person.homeAddress.state = 'Missouri'

Date Formats For Data Binding

A custom date format may be specified to be used when binding a String to a Date value by applying the annotation to a Date field.BindingFormat

import org.grails.databinding.BindingFormat

class Person {
 @BindingFormat('MMddyyyy')
 Date birthDate
}

A global setting may be configured in to define date formats which will be used application wide when binding to Date.application.groovy

// grails-app/conf/application.groovy

grails.databinding.dateFormats = ['MMddyyyy', 'yyyy-MM-dd HH:mm:ss.S',]"yyyy-MM-dd'T'hh:mm:ss'Z'"

The formats specified in will be attempted in the order in which they are included in the List. If a property isgrails.databinding.dateFormats
marked with @BindingFormat, the @BindingFormat will take precedence over the values specified in .grails.databinding.dateFormats

The default formats that are used are "yyyy-MM-dd HH:mm:ss.S", "yyyy-MM-dd'T'hh:mm:ss'Z'" and "yyyy-MM-dd HH:mm:ss.S z".

Custom Formatted Converters

http://grails.github.io/grails-doc/3.0.x/api/org/grails/databinding/BindingFormat.html

216

You may supply your own handler for the annotation by writing a class which implements the interface andBindingFormat FormattedValueConverter
registering an instance of that class as a bean in the Spring application context. Below is an example of a trivial custom String formatter that might convert
the case of a String based on the value assigned to the BindingFormat annotation.

package com.myapp.converters

 org.grails.databinding.converters.FormattedValueConverterimport

class FormattedStringValueConverter FormattedValueConverter {implements
 def convert(value, format) {String
 ('UPPERCASE' == format) {if
 value = value.toUpperCase()
 } ('LOWERCASE' == format) {else if
 value = value.toLowerCase()
 }
 value
 }

 getTargetType() {Class
 // specifies the type to which converter may be appliedthis
 String
 }
}

An instance of that class needs to be registered as a bean in the Spring application context. The bean name is not important. All beans that implemented
FormattedValueConverter will be automatically plugged in to the data binding process.

// grails-app/conf/spring/resources.groovy

beans = {

formattedStringConverter com.myapp.converters.FormattedStringValueConverter

// ...

}

With that in place the annotation may be applied to String fields to inform the data binder to take advantage of the custom converter.BindingFormat

http://grails.github.io/grails-doc/3.0.x/api/org/grails/databinding/BindingFormat.html
http://grails.github.io/grails-doc/3.0.x/api/org/grails/databinding/converters/FormattedValueConverter.html

217

import org.grails.databinding.BindingFormat

class Person {
 @BindingFormat('UPPERCASE')
 someUpperCaseStringString

@BindingFormat('LOWERCASE')
 someLowerCaseStringString

 someOtherStringString
}

Localized Binding Formats

The annotation supports localized format strings by using the optional attribute. If a value is assigned to the code attribute thatBindingFormat code
value will be used as the message code to retrieve the binding format string from the bean in the Spring application context and thatmessageSource
lookup will be localized.

import org.grails.databinding.BindingFormat

class Person {
 @BindingFormat(code='date.formats.birthdays')
 Date birthDate
}

grails-app/conf/i18n/messages.properties
date.formats.birthdays=MMddyyyy

grails-app/conf/i18n/messages_es.properties
date.formats.birthdays=ddMMyyyy

Structured Data Binding Editors

218

A structured data binding editor is a helper class which can bind structured request parameters to a property. The common use case for structured binding
is binding to a object which might be constructed from several smaller pieces of information contained in several request parameters with namesDate
like , and . The structured editor would retrieve all of those individual pieces of informationbirthday_month birthday_date birthday_year
and use them to construct a .Date

The framework provides a structured editor for binding to objects. An application may register its own structured editors for whatever types areDate
appropriate. Consider the following classes:

// src/groovy/databinding/Gadget.groovy
 databindingpackage

class Gadget {
 Shape expandedShape
 Shape compressedShape
}

// src/groovy/databinding/Shape.groovy
 databindingpackage

class Shape {
 areaint
}

A has 2 fields. A has an property. It may be that the application wants to accept request parameters like and Gadget Shape Shape area width
 and use those to calculate the of a at binding time. A structured binding editor is well suited for that.height area Shape

The way to register a structured editor with the data binding process is to add an instance of the org.grails.databinding.TypedStructuredBindingEditor
interface to the Spring application context. The easiest way to implement the interface is to extend the TypedStructuredBindingEditor

 abstract class and override the method as shown below:org.grails.databinding.converters.AbstractStructuredBindingEditor getPropertyValue

http://grails.github.io/grails-doc/3.0.x/api/org/grails/databinding/TypedStructuredBindingEditor.html
http://grails.github.io/grails-doc/3.0.x/api/org/grails/databinding/converters/AbstractStructuredBindingEditor.html

219

// src/groovy/databinding/converters/StructuredShapeEditor.groovy
 databinding.converterspackage

 databinding.Shapeimport

 org.grails.databinding.converters.AbstractStructuredBindingEditorimport

class StructuredShapeEditor AbstractStructuredBindingEditor<Shape> {extends

 Shape getPropertyValue(Map values) {public
 // retrieve the individual values from the Map
 def width = values.width as int
 def height = values.height as int

// use the values to calculate the area of the Shape
 def area = width * height

// create and a Shape with the appropriate areareturn
 Shape(area: area)new
 }
}

An instance of that class needs to be registered with the Spring application context:

// grails-app/conf/spring/resources.groovy
beans = {
 shapeEditor databinding.converters.StructuredShapeEditor

// …
}

When the data binder binds to an instance of the class it will check to see if there are request parameters with names and Gadget compressedShape
 which have a value of "struct" and if they do exist, that will trigger the use of the . The individualexpandedShape StructuredShapeEditor

components of the structure need to have parameter names of the form propertyName_structuredElementName. In the case of the class aboveGadget
that would mean that the request parameter should have a value of "struct" and the and compressedShape compressedShape_width

 parameters should have values which represent the width and the height of the compressed . Similarly, the compressedShape_height Shape
 request parameter should have a value of "struct" and the and parametersexpandedShape expandedShape_width expandedShape_height

should have values which represent the width and the height of the expanded .Shape

220

// grails-app/controllers/demo/DemoController.groovy
class DemoController {

def createGadget(Gadget gadget) {
 /*

/demo/createGadget?expandedShape=struct&expandedShape_width=80&expandedShape_height=30
 &compressedShape=struct&compressedShape_width=10&compressedShape_height=3

*/

// with the request parameters shown above gadget.expandedShape.area would be 2400
 // and gadget.compressedShape.area would be 30

// ...

}
}

Typically the request parameters with "struct" as their value would be represented by hidden form fields.

Data Binding Event Listeners

The interface provides a mechanism for listeners to be notified of data binding events. The interface looks like this:DataBindingListener

http://grails.github.io/grails-doc/3.0.x/api/org/grails/databinding/events/DataBindingListener.html

221

package org.grails.databinding.events;

 org.grails.databinding.errors.BindingError;import

 DataBindingListener {public interface

/**
 * @ the listener is interested in events the specified type.return true if for
 */
 supports(<?> clazz);boolean Class

/**
 * Called when data binding is about to start.
 *
 * @param target The object data binding is being imposed upon
 * @param errors the Spring Errors instance (a org.springframework.validation.BindingResult)
 * @ data binding should return true if continue
 */
 beforeBinding(target, errors);Boolean Object Object

/**
 * Called when data binding is about to imposed on a property
 *
 * @param target The object data binding is being imposed upon
 * @param propertyName The name of the property being bound to
 * @param value The value of the property being bound
 * @param errors the Spring Errors instance (a org.springframework.validation.BindingResult)
 * @ data binding should , otherwise return true if continue return false
 */
 beforeBinding(target, propertyName, value, errors);Boolean Object String Object Object

/**
 * Called after data binding has been imposed on a property
 *
 * @param target The object data binding is being imposed upon
 * @param propertyName The name of the property that was bound to
 * @param errors the Spring Errors instance (a org.springframework.validation.BindingResult)
 */
 void afterBinding(target, propertyName, errors);Object String Object

/**
 * Called after data binding has finished.
 *
 * @param target The object data binding is being imposed upon
 * @param errors the Spring Errors instance (a org.springframework.validation.BindingResult)
 */
 void afterBinding(target, errors);Object Object

/**
 * Called when an error occurs binding to a property
 * @param error encapsulates information about the binding error
 * @param errors the Spring Errors instance (a org.springframework.validation.BindingResult)
 * @see BindingError
 */
 void bindingError(BindingError error, errors);Object
}

Any bean in the Spring application context which implements that interface will automatically be registered with the data binder. The
 class implements the interface and provides default implementations for all of the methods inDataBindingListenerAdapter DataBindingListener

the interface so this class is well suited for subclassing so your listener class only needs to provide implementations for the methods your listener is
interested in.

The Grails data binder has limited support for the older style listeners. looks like this:BindEventListener BindEventListener

http://grails.github.io/grails-doc/3.0.x/api/org/grails/databinding/events/DataBindingListenerAdapter.html
http://grails.org/doc/3.0.x/api/org/codehaus/groovy/grails/web/binding/BindEventListener.html

222

package org.codehaus.groovy.grails.web.binding;

 org.springframework.beans.MutablePropertyValues;import
 org.springframework.beans.TypeConverter;import

 BindEventListener {public interface

/**
 * @param target The target to bind to
 * @param source The source of the binding, typically a Map
 * @param typeConverter The type converter to be used
 */
 void doBind(target, MutablePropertyValues source, TypeConverter typeConverter);Object
}

Support for is disabled by default. To enable support assign a value of to the BindEventListener true
 property in .grails.databinding.enableSpringEventAdapter grails-app/conf/application.groovy

// grails-app/conf/application.groovy
grails.databinding.enableSpringEventAdapter=true

...

With set to instances of which are in the Spring application context willenableSpringEventAdapter true BindEventListener
automatically be registered with the data binder. Notice that the and arguments to the MutablePropertyValues TypeConverter doBind
method in are Spring specific classes and are not relevant to the current data binder. The event adapter will pass valuesBindEventListener null
for those arguments. The only real value passed into the method will be the object being bound to. This limited support is provided for backwarddoBind
compatibility and will be useful for a subset of scenarios. Developers are encouraged to migrate their beans to the newer BindEventListener

 model.DataBindingListener

Using The Data Binder Directly

There are situations where an application may want to use the data binder directly. For example, to do binding in a Service on some arbitrary object which
is not a domain class. The following will not work because the property is read only.properties

// src/groovy/bindingdemo/Widget.groovy
 bindingdemopackage

class Widget {
 nameString
 sizeInteger
}

223

// grails-app/services/bindingdemo/WidgetService.groovy
 bindingdemopackage

class WidgetService {

def updateWidget(Widget widget, Map data) {
 // will an exception becausethis throw
 // properties is read-only
 widget.properties = data
 }
}

An instance of the data binder is in the Spring application context with a bean name of . That bean implements the grailsWebDataBinder
 interface. The following code demonstrates using the data binder directly.DataBinder

// grails-app/services/bindingdmeo/WidgetService
 bindingdemopackage

 org.grails.databinding.SimpleMapDataBindingSourceimport

class WidgetService {

// bean will be autowired into the servicethis
 def grailsWebDataBinder

def updateWidget(Widget widget, Map data) {
 grailsWebDataBinder.bind widget, data as SimpleMapDataBindingSource
 }

}

See the documentation for more information about overloaded versions of the method.DataBinder bind

Data Binding and Security Concerns

When batch updating properties from request parameters you need to be careful not to allow clients to bind malicious data to domain classes and be
persisted in the database. You can limit what properties are bound to a given domain class using the subscript operator:

def p = Person.get(1)

p.properties['firstName','lastName'] = params

In this case only the and properties will be bound.firstName lastName

http://grails.github.io/grails-doc/3.0.x/api/org/grails/databinding/DataBinder.html
http://grails.github.io/grails-doc/3.0.x/api/org/grails/databinding/DataBinder.html

224

Another way to do this is is to use as the target of data binding instead of domain classes. Alternatively there is also the flexible Command Objects
 method.bindData

The method allows the same data binding capability, but to arbitrary objects:bindData

def p = Person()new
bindData(p, params)

The method also lets you exclude certain parameters that you don't want updated:bindData

def p = Person()new
bindData(p, params, [exclude: 'dateOfBirth'])

Or include only certain properties:

def p = Person()new
bindData(p, params, [include: ['firstName', 'lastName']])

Note that if an empty List is provided as a value for the parameter then all fields will be subject to binding ifinclude
they are not explicitly excluded.

The constraint can be used to globally prevent data binding for certain properties.bindable

8.1.6 XML and JSON Responses

Using the render method to output XML

Grails supports a few different ways to produce XML and JSON responses. The first is the method.render

The method can be passed a block of code to do mark-up building in XML:render

225

def list() {

def results = Book.list()

render(contentType:) {"text/xml"
 books {
 (b in results) {for
 book(title: b.title)
 }
 }
 }
}

The result of this code would be something like:

<books>
 <book title= />"The Stand"
 <book title= />"The Shining"
</books>

Be careful to avoid naming conflicts when using mark-up building. For example this code would produce an error:

def list() {

def books = Book.list() // naming conflict here

render(contentType:) {"text/xml"
 books {
 (b in results) {for
 book(title: b.title)
 }
 }
 }
}

This is because there is local variable which Groovy attempts to invoke as a method.books

Using the render method to output JSON

The method can also be used to output JSON:render

226

def list() {

def results = Book.list()

render(contentType:) {"application/json"
 books = array {
 (b in results) {for
 book title: b.title
 }
 }
 }
}

In this case the result would be something along the lines of:

[
 { : },"title" "The Stand"
 { : }"title" "The Shining"
]

The same dangers with naming conflicts described above for XML also apply to JSON building.

Automatic XML Marshalling

Grails also supports automatic marshalling of to XML using special converters.domain classes

To start off with, import the package into your controller:grails.converters

import grails.converters.*

Now you can use the following highly readable syntax to automatically convert domain classes to XML:

render Book.list() as XML

The resulting output would look something like the following::

227

<?xml version= encoding= ?>"1.0" "ISO-8859-1"
<list>
 <book id= >"1"
 <author>Stephen King</author>
 <title>The Stand</title>
 </book>
 <book id= >"2"
 <author>Stephen King</author>
 <title>The Shining</title>
 </book>
</list>

For more information on XML marshalling see the section on REST

Automatic JSON Marshalling

Grails also supports automatic marshalling to JSON using the same mechanism. Simply substitute with :XML JSON

render Book.list() as JSON

The resulting output would look something like the following:

[
 { :1,"id"
 : ,"class" "Book"
 : ,"author" "Stephen King"
 : },"title" "The Stand"
 { :2,"id"
 : ,"class" "Book"
 : ,"author" "Stephen King"
 : Date(1194127343161),"releaseDate" new
 : }"title" "The Shining"
]

8.1.7 More on JSONBuilder
The previous section on on XML and JSON responses covered simplistic examples of rendering XML and JSON responses. Whilst the XML builder used
by Grails is the standard found in Groovy, the JSON builder is a custom implementation specific to Grails.XmlSlurper

JSONBuilder and Grails versions

http://groovy.codehaus.org/Reading+XML+using+Groovy's+XmlSlurper

228

JSONBuilder behaves different depending on the version of Grails you use. For version below 1.2 the deprecated class is used.grails.web.JSONBuilder
This section covers the usage of the Grails 1.2 JSONBuilder

For backwards compatibility the old class is used with the method for older applications; to use the newer/better JSONBuilder render
 class set the following in :JSONBuilder application.groovy

grails.json.legacy.builder = false

Rendering Simple Objects

To render a simple JSON object just set properties within the context of the Closure:

render(contentType:) {"application/json"
 hello = "world"
}

The above will produce the JSON:

{ : }"hello" "world"

Rendering JSON Arrays

To render a list of objects simple assign a list:

render(contentType:) {"application/json"
 categories = ['a', 'b', 'c']
}

This will produce:

http://grails.github.io/grails-doc/3.0.x/api/grails/web/JSONBuilder.html

229

{ :[, ,]}"categories" "a" "b" "c"

You can also render lists of complex objects, for example:

render(contentType:) {"application/json"
 categories = [{ a = }, { b = }]"A" "B"
}

This will produce:

{ :[{ : } , { : }] }"categories" "a" "A" "b" "B"

Use the special method to return a list as the root:element

render(contentType:) {"application/json"
 element 1
 element 2
 element 3
}

The above code produces:

[1,2,3]

Rendering Complex Objects

230

Rendering complex objects can be done with Closures. For example:

render(contentType:) {"application/json"
 categories = ['a', 'b', 'c']
 title = "Hello JSON"
 information = {
 pages = 10
 }
}

The above will produce the JSON:

{ :[, ,], : , :{ :10}}"categories" "a" "b" "c" "title" "Hello JSON" "information" "pages"

Arrays of Complex Objects

As mentioned previously you can nest complex objects within arrays using Closures:

render(contentType:) {"application/json"
 categories = [{ a = }, { b = }]"A" "B"
}

You can use the method to build them up dynamically:array

def results = Book.list()
render(contentType:) {"application/json"
 books = array {
 (b in results) {for
 book title: b.title
 }
 }
}

Direct JSONBuilder API Access

231

If you don't have access to the method, but still want to produce JSON you can use the API directly:render

def builder = JSONBuilder()new

def result = builder.build {
 categories = ['a', 'b', 'c']
 title = "Hello JSON"
 information = {
 pages = 10
 }
}

// prints the JSON text
println result.toString()

def sw = StringWriter()new
result.render sw

8.1.8 Uploading Files

Programmatic File Uploads

Grails supports file uploads using Spring's interface. The first step for file uploading is to create a multipart form like this:MultipartHttpServletRequest

Upload Form:

 <g:uploadForm action= >"upload"
 <input type= name= />"file" "myFile"
 <input type= />"submit"
 </g:uploadForm>

The tag conveniently adds the attribute to the standard tag.uploadForm enctype="multipart/form-data" <g:form>

There are then a number of ways to handle the file upload. One is to work with the Spring instance directly:MultipartFile

def upload() {
 def f = request.getFile('myFile')
 (f.empty) {if
 flash.message = 'file cannot be empty'
 render(view: 'uploadForm')
 return
 }

f.transferTo(File('/some/local/dir/myfile.txt'))new
 response.sendError(200, 'Done')
}

http://docs.spring.io/spring/docs/4.0.x/javadoc-api/org/springframework/web/multipart/MultipartHttpServletRequest.html
http://docs.spring.io/spring/docs/4.0.x/javadoc-api/org/springframework/web/multipart/MultipartFile.html

232

This is convenient for doing transfers to other destinations and manipulating the file directly as you can obtain an and so on with the InputStream
 interface.MultipartFile

File Uploads through Data Binding

File uploads can also be performed using data binding. Consider this domain class:Image

class Image {
 [] myFilebyte

 constraints = {static
 // Limit upload file size to 2MB
 myFile maxSize: 1024 * 1024 * 2
 }
}

If you create an image using the object in the constructor as in the example below, Grails will automatically bind the file's contents as a toparams byte
the property:myFile

def img = Image(params)new

It's important that you set the or constraints, otherwise your database may be created with a small column size that can't handle reasonablysize maxSize
sized files. For example, both H2 and MySQL default to a blob size of 255 bytes for properties.byte

It is also possible to set the contents of the file as a string by changing the type of the property on the image to a String type:myFile

class Image {
 myFileString
}

8.1.9 Command Objects
Grails controllers support the concept of command objects. A command object is a class that is used in conjunction with , usually to allowdata binding
validation of data that may not fit into an existing domain class.

Note: A class is only considered to be a command object when it is used as a parameter of an action.

http://docs.spring.io/spring/docs/4.0.x/javadoc-api/org/springframework/web/multipart/MultipartFile.html

233

Declaring Command Objects

Command object classes are defined just like any other class.

class LoginCommand grails.validation.Validateable {implements
 usernameString
 passwordString

 constraints = {static
 username(blank: , minSize: 6)false
 password(blank: , minSize: 6)false
 }
}

In this example, the command object class implements the trait. The trait allows the definition of just likeValidateable Validateable constraints
in . If the command object is defined in the same source file as the controller that is using it, Grails will automatically make it domain classes

. It is not required that command object classes be validateable.Validateable

By default, all object properties are which matches the behavior of GORM domain objects. If you want a Validateable nullable: false
 that has properties by default, you can specify this by defining a method in the class:Validateable nullable: true defaultNullable

class AuthorSearchCommand grails.validation.Validateable {implements
 nameString
 ageInteger

 defaultNullable() {static boolean
 true
 }
}

In this example, both and will allow null values during validation.name age

Using Command Objects

To use command objects, controller actions may optionally specify any number of command object parameters. The parameter types must be supplied so
that Grails knows what objects to create and initialize.

Before the controller action is executed Grails will automatically create an instance of the command object class and populate its properties by binding the
request parameters. If the command object class is marked with then the command object will be validated. For example:Validateable

234

class LoginController {

def login(LoginCommand cmd) {
 (cmd.hasErrors()) {if
 redirect(action: 'loginForm')
 return
 }

// work with the command object data
 }
}

If the command object's type is that of a domain class and there is an request parameter then instead of invoking the domain class constructor to createid
a new instance a call will be made to the static method on the domain class and the value of the parameter will be passed as an argument.get id
Whatever is returned from that call to is what will be passed into the controller action. This means that if there is an request parameter and noget id
corresponding record is found in the database then the value of the command object will be . If an error occurs retrieving the instance from thenull
database then will be passed as an argument to the controller action and an error will be added the controller's property. If the commandnull errors
object's type is a domain class and there is no request parameter or there is an request parameter and its value is empty then will be passedid id null
into the controller action unless the HTTP request method is "POST", in which case a new instance of the domain class will be created by invoking the
domain class constructor. For all of the cases where the domain class instance is non-null, data binding is only performed if the HTTP request method is
"POST", "PUT" or "PATCH".

Command Objects And Request Parameter Names

Normally request parameter names will be mapped directly to property names in the command object. Nested parameter names may be used to bind down
the object graph in an intuitive way. In the example below a request parameter named will be bound to the property of the instancename name Person
and a request parameter named will be bound to the property of the property in the .address.city city address Person

class StoreController {
 def buy(Person buyer) {
 // …
 }
}

class Person {
 nameString
 Address address
}

class Address {
 cityString
}

A problem may arise if a controller action accepts multiple command objects which happen to contain the same property name. Consider the following
example.

235

class StoreController {
 def buy(Person buyer, Product product) {
 // …
 }
}

class Person {
 nameString
 Address address
}

class Address {
 cityString
}

class Product {
 nameString
}

If there is a request parameter named it isn't clear if that should represent the name of the or the name of the . Another versionname Product Person
of the problem can come up if a controller action accepts 2 command objects of the same type as shown below.

class StoreController {
 def buy(Person buyer, Person seller, Product product) {
 // …
 }
}

class Person {
 nameString
 Address address
}

class Address {
 cityString
}

class Product {
 nameString
}

To help deal with this the framework imposes special rules for mapping parameter names to command object types. The command object data binding
will treat all parameters that begin with the controller action parameter name as belonging to the corresponding command object. For example, the

 request parameter will be bound to the property in the argument, the request parameter will be boundproduct.name name product buyer.name
to the property in the argument the request parameter will be bound to the property of the name buyer seller.address.city city address
property of the argument, etc...seller

Command Objects and Dependency Injection

Command objects can participate in dependency injection. This is useful if your command object has some custom validation logic which uses a Grails
:service

236

class LoginCommand grails.validation.Validateable {implements

def loginService

 usernameString
 passwordString

 constraints = {static
 username validator: { val, obj ->
 obj.loginService.canLogin(obj.username, obj.password)
 }
 }
}

In this example the command object interacts with the bean which is injected by name from the Spring .loginService ApplicationContext

Binding The Request Body To Command Objects

When a request is made to a controller action which accepts a command object and the request contains a body, Grails will attempt to parse the body of
the request based on the request content type and use the body to do data binding on the command object. See the following example.

// grails-app/controllers/bindingdemo/DemoController.groovy
 bindingdemopackage

class DemoController {

def createWidget(Widget w) {
 render "Name: ${w?.name}, Size: ${w?.size}"
 }
}

class Widget {
 nameString
 sizeInteger
}

$ curl -H -d '{ : , : }' localhost:8080/demo/createWidget"Content-Type: application/json" "name" "Some Widget" "size" "42"
 Name: Some Widget, Size: 42
~ $
$ curl -H -d '<widget><name>Some Other Widget</name><size>2112</size></widget>'"Content-Type: application/xml"
localhost:8080/bodybind/demo/createWidget
 Name: Some Other Widget, Size: 2112
~ $

237

Note that the body of the request is being parsed to make that work. Any attempt to read the body of the request after that will fail since the corresponding
input stream will be empty. The controller action can either use a command object or it can parse the body of the request on its own (either directly, or by
referring to something like request.JSON), but cannot do both.

// grails-app/controllers/bindingdemo/DemoController.groovy
 bindingdemopackage

class DemoController {

def createWidget(Widget w) {
 // will fail because it requires reading the body,this
 // which has already been read.
 def json = request.JSON

// ...

}
}

8.1.10 Handling Duplicate Form Submissions
Grails has built-in support for handling duplicate form submissions using the "Synchronizer Token Pattern". To get started you define a token on the form
tag:

<g:form useToken= ...>"true"

Then in your controller code you can use the method to handle valid and invalid requests:withForm

withForm {
 // good request
}.invalidToken {
 // bad request
}

If you only provide the method and not the chained method then by default Grails will store the invalid token in a withForm invalidToken
 variable and redirect the request back to the original page. This can then be checked in the view:flash.invalidToken

238

<g:if test= >"${flash.invalidToken}"
 Don't click the button twice!
</g:if>

The tag makes use of the and hence requires session affinity or clustered sessions if used in a cluster.withForm session

8.1.11 Simple Type Converters

Type Conversion Methods

If you prefer to avoid the overhead of and simply want to convert incoming parameters (typically Strings) into another more appropriateData Binding
type the object has a number of convenience methods for each type:params

def total = params. ('total')int

The above example uses the method, and there are also methods for , , , and so on. Each of these methods is null-safeint boolean long char short
and safe from any parsing errors, so you don't have to perform any additional checks on the parameters.

Each of the conversion methods allows a default value to be passed as an optional second argument. The default value will be returned if a corresponding
entry cannot be found in the map or if an error occurs during the conversion. Example:

def total = params. ('total', 42)int

These same type conversion methods are also available on the parameter of GSP tags.attrs

Handling Multi Parameters

A common use case is dealing with multiple request parameters of the same name. For example you could get a query string such as
.?name=Bob&name=Judy

In this case dealing with one parameter and dealing with many has different semantics since Groovy's iteration mechanics for iterate over eachString
character. To avoid this problem the object provides a method that always returns a list:params list

239

for (name in params.list('name')) {
 println name
}

8.1.12 Declarative Controller Exception Handling
Grails controllers support a simple mechanism for declarative exception handling. If a controller declares a method that accepts a single argument and the
argument type is or some subclass of , that method will be invoked any time an action in thatjava.lang.Exception java.lang.Exception
controller throws an exception of that type. See the following example.

// grails-app/controllers/demo/DemoController.groovy
 demopackage

class DemoController {

def someAction() {
 // some workdo
 }

def handleSQLException(SQLException e) {
 render 'A SQLException Was Handled'
 }

def handleBatchUpdateException(BatchUpdateException e) {
 redirect controller: 'logging', action: 'batchProblem'
 }

def handleNumberFormatException(NumberFormatException nfe) {
 [problemDescription: 'A Was Invalid']Number
 }
}

That controller will behave as if it were written something like this...

240

// grails-app/controllers/demo/DemoController.groovy
 demopackage

class DemoController {

def someAction() {
 {try
 // some workdo
 } (BatchUpdateException e) {catch
 handleBatchUpdateException(e)return
 } (SQLException e) {catch
 handleSQLException(e)return
 } (NumberFormatException e) {catch
 handleNumberFormatException(e)return
 }
 }

def handleSQLException(SQLException e) {
 render 'A SQLException Was Handled'
 }

def handleBatchUpdateException(BatchUpdateException e) {
 redirect controller: 'logging', action: 'batchProblem'
 }

def handleNumberFormatException(NumberFormatException nfe) {
 [problemDescription: 'A Was Invalid']Number
 }
}

The exception handler method names can be any valid method name. The name is not what makes the method an exception handler, the Exception
argument type is the important part.

The exception handler methods can do anything that a controller action can do including invoking , , returning a model, etc.render redirect

One way to share exception handler methods across multiple controllers is to use inheritance. Exception handler methods are inherited into subclasses so
an application could define the exception handlers in an abstract class that multiple controllers extend from. Another way to share exception handler
methods across multiple controllers is to use a trait, as shown below...

// src/groovy/com/demo/DatabaseExceptionHandler.groovy
 com.demopackage

trait DatabaseExceptionHandler {
 def handleSQLException(SQLException e) {
 // handle SQLException
 }

def handleBatchUpdateException(BatchUpdateException e) {
 // handle BatchUpdateException
 }
}

241

// grails-app/controllers/com/demo/DemoController.groovy
 com.demopackage

class DemoController DatabaseExceptionHandler {implements

// all of the exception handler methods defined
 // in DatabaseExceptionHandler will be added to
 // class at compile timethis
}

Exception handler methods must be present at compile time. Specifically, exception handler methods which are runtime metaprogrammed onto a
controller class are not supported.

8.2 Groovy Server Pages
Groovy Servers Pages (or GSP for short) is Grails' view technology. It is designed to be familiar for users of technologies such as ASP and JSP, but to be
far more flexible and intuitive.

GSPs live in the directory and are typically rendered automatically (by convention) or with the method such as:grails-app/views render

render(view:)"index"

A GSP is typically a mix of mark-up and GSP tags which aid in view rendering.

Although it is possible to have Groovy logic embedded in your GSP and doing this will be covered in this document, the
practice is strongly discouraged. Mixing mark-up and code is a thing and most GSP pages contain no code and needn'tbad
do so.

A GSP typically has a "model" which is a set of variables that are used for view rendering. The model is passed to the GSP view from a controller. For
example consider the following controller action:

def show() {
 [book: Book.get(params.id)]
}

This action will look up a instance and create a model that contains a key called . This key can then be referenced within the GSP view usingBook book
the name :book

242

${book.title}

Embedding data received from user input has the risk of making your application vulnerable to an Cross Site Scripting
(XSS) attack. Please read the documentation on for information on how to prevent XSS attacks.XSS prevention

8.2.1 GSP Basics
In the next view sections we'll go through the basics of GSP and what is available to you. First off let's cover some basic syntax that users of JSP and ASP
should be familiar with.

GSP supports the usage of scriptlet blocks to embed Groovy code (again this is discouraged):<% %>

<html>
 <body>
 <% out << %>"Hello GSP!"
 </body>
</html>

You can also use the syntax to output values:<%= %>

<html>
 <body>
 <%= %>"Hello GSP!"
 </body>
</html>

GSP also supports JSP-style server-side comments (which are not rendered in the HTML response) as the following example demonstrates:

243

<html>
 <body>
 <%-- This is my comment --%>
 <%= %>"Hello GSP!"
 </body>
</html>

Embedding data received from user input has the risk of making your application vulnerable to an Cross Site Scripting
(XSS) attack. Please read the documentation on for information on how to prevent XSS attacks.XSS prevention

8.2.1.1 Variables and Scopes
Within the brackets you can declare variables:<% %>

<% now = new Date() %>

and then access those variables later in the page:

<%=now%>

Within the scope of a GSP there are a number of pre-defined variables, including:

244

application - The instancejavax.servlet.ServletContext

applicationContext The Spring instanceApplicationContext

flash - The objectflash

grailsApplication - The instanceGrailsApplication

out - The response writer for writing to the output stream

params - The object for retrieving request parametersparams

request - The instanceHttpServletRequest

response - The instanceHttpServletResponse

session - The instanceHttpSession

webRequest - The instanceGrailsWebRequest

8.2.1.2 Logic and Iteration
Using the syntax you can embed loops and so on using this syntax:<% %>

<html>
 <body>
 %><% [1,2,3,4].each { num ->
 <p><%= %>"Hello ${num}!" </p>
 <%}%>
 </body>
</html>

As well as logical branching:

<html>
 <body>
 <% if (params.hello == 'true')%>
 <%= %>"Hello!"
 <% else %>
 <%= %>"Goodbye!"
 </body>
</html>

8.2.1.3 Page Directives
GSP also supports a few JSP-style page directives.

http://download.oracle.com/javaee/1.4/api/javax/servlet/ServletContext.html
http://docs.spring.io/spring/docs/4.0.x/javadoc-api/org/springframework/context/ApplicationContext.html
http://grails.github.io/grails-doc/3.0.x/api/grails/core/GrailsApplication.html
http://download.oracle.com/javaee/1.4/api/javax/servlet/http/HttpServletRequest.html
http://download.oracle.com/javaee/1.4/api/javax/servlet/http/HttpServletResponse.html
http://download.oracle.com/javaee/1.4/api/javax/servlet/http/HttpSession.html
http://grails.github.io/grails-doc/3.0.x/api/org/grails/web/servlet/mvc/GrailsWebRequest.html

245

The import directive lets you import classes into the page. However, it is rarely needed due to Groovy's default imports and :GSP Tags

<%@ page import= %>"java.awt.*"

GSP also supports the contentType directive:

<%@ page contentType= %>"application/json"

The contentType directive allows using GSP to render other formats.

8.2.1.4 Expressions
In GSP the syntax introduced earlier is rarely used due to the support for GSP expressions. A GSP expression is similar to a JSP EL expression<%= %>
or a Groovy GString and takes the form :${expr}

<html>
 <body>
 Hello ${params.name}
 </body>
</html>

However, unlike JSP EL you can have any Groovy expression within the block.${..}

Embedding data received from user input has the risk of making your application vulnerable to an Cross Site Scripting
(XSS) attack. Please read the documentation on for information on how to prevent XSS attacks.XSS prevention

8.2.2 GSP Tags
Now that the less attractive JSP heritage has been set aside, the following sections cover GSP's built-in tags, which are the preferred way to define GSP
pages.

The section on covers how to add your own custom tag libraries.Tag Libraries

246

All built-in GSP tags start with the prefix . Unlike JSP, you don't specify any tag library imports. If a tag starts with it is automatically assumed tog: g:
be a GSP tag. An example GSP tag would look like:

<g:example />

GSP tags can also have a body such as:

<g:example>
 Hello world
</g:example>

Expressions can be passed into GSP tag attributes, if an expression is not used it will be assumed to be a String value:

<g:example attr= >"${new Date()}"
 Hello world
</g:example>

Maps can also be passed into GSP tag attributes, which are often used for a named parameter style syntax:

<g:example attr= attr2= >"${new Date()}" "[one:1, two:2, three:3]"
 Hello world
</g:example>

Note that within the values of attributes you must use single quotes for Strings:

<g:example attr= attr2= >"${new Date()}" "[one:'one', two:'two']"
 Hello world
</g:example>

247

With the basic syntax out the way, the next sections look at the tags that are built into Grails by default.

8.2.2.1 Variables and Scopes
Variables can be defined within a GSP using the tag:set

<g:set var= value= />"now" "${new Date()}"

Here we assign a variable called to the result of a GSP expression (which simply constructs a new instance). You can also usenow java.util.Date
the body of the tag to define a variable:<g:set>

<g:set var= >"myHTML"
 Some re-usable code on: ${new Date()}
</g:set>

The assigned value can also be a bean from the applicationContext:

<g:set var= bean= />"bookService" "bookService"

Variables can also be placed in one of the following scopes:

page - Scoped to the current page (default)

request - Scoped to the current request

flash - Placed within scope and hence available for the next requestflash

session - Scoped for the user session

application - Application-wide scope.

To specify the scope, use the attribute:scope

248

<g:set var= value= scope= />"now" "${new Date()}" "request"

8.2.2.2 Logic and Iteration
GSP also supports logical and iterative tags out of the box. For logic there are , and tags for use with branching:if else elseif

<g:if test= >"${session.role == 'admin'}"
 <%-- show administrative functions --%>
</g:if>
<g:else>
 <%-- show basic functions --%>
</g:else>

Use the and tags for iteration:each while

<g:each in= var= >"${[1,2,3]}" "num"
 Number ${num}<p> </p>
</g:each>

<g:set var= value= />"num" "${1}"
<g:while test= >"${num < 5 }"
 Number ${num++}<p> </p>
</g:while>

8.2.2.3 Search and Filtering
If you have collections of objects you often need to sort and filter them. Use the and tags for these tasks:findAll grep

Stephen King's Books:
<g:findAll in= expr= >"${books}" "it.author == 'Stephen King'"
 Title: ${it.title}<p> </p>
</g:findAll>

The attribute contains a Groovy expression that can be used as a filter. The tag does a similar job, for example filtering by class:expr grep

249

<g:grep in= filter= >"${books}" "NonFictionBooks.class"
 Title: ${it.title}<p> </p>
</g:grep>

Or using a regular expression:

<g:grep in= filter= >"${books.title}" "~/.*?Groovy.*?/"
 Title: ${it}<p> </p>
</g:grep>

The above example is also interesting due to its usage of GPath. GPath is an XPath-like language in Groovy. The variable is a collection of books Book
instances. Since each has a , you can obtain a list of Book titles using the expression . Groovy will auto-magically iterateBook title books.title
the collection, obtain each title, and return a new list!

8.2.2.4 Links and Resources
GSP also features tags to help you manage linking to controllers and actions. The tag lets you specify controller and action name pairing and it willlink
automatically work out the link based on the , even if you change them! For example:URL Mappings

<g:link action= id= >"show" "1" Book 1</g:link>

${currentBook.name}<g:link action= id= >"show" "${currentBook.id}" </g:link>

Book Home<g:link controller= >"book" </g:link>

Book List<g:link controller= action= >"book" "list" </g:link>

Book List<g:link url= >"[action: 'list', controller: 'book']" </g:link>

<g:link params="[sort: 'title', order: 'asc', author: currentBook.author]"
Book List action= >"list" </g:link>

8.2.2.5 Forms and Fields

Form Basics

GSP supports many different tags for working with HTML forms and fields, the most basic of which is the tag. This is a controller/action awareform
version of the regular HTML form tag. The attribute lets you specify which controller and action to map to:url

250

<g:form name= url= >"myForm" "[controller:'book',action:'list']" ...</g:form>

In this case we create a form called that submits to the 's action. Beyond that all of the usual HTML attributes apply.myForm BookController list

Form Fields

In addition to easy construction of forms, GSP supports custom tags for dealing with different types of fields, including:

textField - For input fields of type 'text'

passwordField - For input fields of type 'password'

checkBox - For input fields of type 'checkbox'

radio - For input fields of type 'radio'

hiddenField - For input fields of type 'hidden'

select - For dealing with HTML select boxes

Each of these allows GSP expressions for the value:

<g:textField name= value= />"myField" "${myValue}"

GSP also contains extended helper versions of the above tags such as (for creating groups of tags), , and radioGroup radio localeSelect currencySelect
 (for selecting locales, currencies and time zones respectively).timeZoneSelect

Multiple Submit Buttons

The age old problem of dealing with multiple submit buttons is also handled elegantly with Grails using the tag. It is just like a regularactionSubmit
submit, but lets you specify an alternative action to submit to:

<g:actionSubmit value= action= />"Some update label" "update"

8.2.2.6 Tags as Method Calls

251

One major different between GSP tags and other tagging technologies is that GSP tags can be called as either regular tags or as method calls from
, or GSP views.controllers tag libraries

Tags as method calls from GSPs

Tags return their results as a String-like object (a which has all of the same methods as String) instead of writing directly to theStreamCharBuffer
response when called as methods. For example:

Static Resource: ${createLinkTo(dir: , file:)}"images" "logo.jpg"

This is particularly useful for using a tag within an attribute:

"${createLinkTo(dir: 'images', file: 'logo.jpg')}"

In view technologies that don't support this feature you have to nest tags within tags, which becomes messy quickly and often has an adverse effect of
WYSIWYG tools such as Dreamweaver that attempt to render the mark-up as it is not well-formed:

<img src= images logo.jpg ""<g:createLinkTo dir=" " file=" " /> />

Tags as method calls from Controllers and Tag Libraries

You can also invoke tags from controllers and tag libraries. Tags within the default can be invoked without the prefix and a g: namespace
 result is returned:StreamCharBuffer

def imageLocation = createLinkTo(dir: , file:).toString()"images" "logo.jpg"

Prefix the namespace to avoid naming conflicts:

252

def imageLocation = g.createLinkTo(dir: , file:).toString()"images" "logo.jpg"

For tags that use a , use that prefix for the method call. For example (from the):custom namespace FCK Editor plugin

def editor = fckeditor.editor(name: , width: , height:)"text" "100%" "400"

8.2.3 Views and Templates
Grails also has the concept of templates. These are useful for partitioning your views into maintainable chunks, and combined with provide aLayouts
highly re-usable mechanism for structured views.

Template Basics

Grails uses the convention of placing an underscore before the name of a view to identify it as a template. For example, you might have a template that
renders Books located at :grails-app/views/book/_bookTemplate.gsp

<div class= id= >"book" "${book?.id}"
 Title: ${book?.title}<div> </div>
 Author: ${book?.author?.name}<div> </div>
</div>

Use the tag to render this template from one of the views in :render grails-app/views/book

<g:render template= model= />"bookTemplate" "[book: myBook]"

Notice how we pass into a model to use using the attribute of the tag. If you have multiple instances you can also render themodel render Book
template for each using the render tag with a attribute:Book collection

http://grails.org/plugin/fckeditor

253

<g:render template= var= collection= />"bookTemplate" "book" "${bookList}"

Shared Templates

In the previous example we had a template that was specific to the and its views at . However, youBookController grails-app/views/book
may want to share templates across your application.

In this case you can place them in the root views directory at grails-app/views or any subdirectory below that location, and then with the template attribute
use an absolute location starting with instead of a relative location. For example if you had a template called /

, you would reference it as:grails-app/views/shared/_mySharedTemplate.gsp

<g:render template= />"/shared/mySharedTemplate"

You can also use this technique to reference templates in any directory from any view or controller:

<g:render template= model= />"/book/bookTemplate" "[book: myBook]"

The Template Namespace

Since templates are used so frequently there is template namespace, called , available that makes using templates easier. Consider for example thetmpl
following usage pattern:

<g:render template= model= />"bookTemplate" "[book:myBook]"

This can be expressed with the namespace as follows:tmpl

254

<tmpl:bookTemplate book= />"${myBook}"

Templates in Controllers and Tag Libraries

You can also render templates from controllers using the controller method. This is useful for JavaScript heavy applications where you generaterender
small HTML or data responses to partially update the current page instead of performing new request:

def bookData() {
 def b = Book.get(params.id)
 render(template: , model:[book:b])"bookTemplate"
}

The controller method writes directly to the response, which is the most common behaviour. To instead obtain the result of template as a String yourender
can use the tag:render

def bookData() {
 def b = Book.get(params.id)
 content = g.render(template: , model:[book:b])String "bookTemplate"
 render content
}

Notice the usage of the namespace which tells Grails we want to use the instead of the method. g tag as method call render

8.2.4 Layouts with Sitemesh

Creating Layouts

Grails leverages , a decorator engine, to support view layouts. Layouts are located in the directory. A typicalSitemesh grails-app/views/layouts
layout can be seen below:

http://sitemesh.org

255

<html>
 <head>
 <title><g:layoutTitle default= />"An example decorator" </title>
 <g:layoutHead />
 </head>
 <body onload= >"${pageProperty(name:'body.onload')}"
 <div class= >"menu" <!--my common menu goes here--></div>
 <div class= >"body"
 <g:layoutBody />
 </div>
 </body>
</html>

The key elements are the , and tag invocations:layoutHead layoutTitle layoutBody

layoutTitle - outputs the target page's title

layoutHead - outputs the target page's head tag contents

layoutBody - outputs the target page's body tag contents

The previous example also demonstrates the tag which can be used to inspect and return aspects of the target page.pageProperty

Triggering Layouts

There are a few ways to trigger a layout. The simplest is to add a meta tag to the view:

<html>
 <head>
 An Example Page<title> </title>
 <meta name= content= />"layout" "main"
 </head>
 This is my content!<body> </body>
</html>

In this case a layout called will be used to layout the page. If we were to use the layout from thegrails-app/views/layouts/main.gsp
previous section the output would resemble this:

256

<html>
 <head>
 An Example Page<title> </title>
 </head>
 <body onload= >""
 <div class= >"menu" <!--my common menu goes here--></div>
 <div class= >"body"
 This is my content!
 </div>
 </body>
</html>

Specifying A Layout In A Controller

Another way to specify a layout is to specify the name of the layout by assigning a value to the "layout" property in a controller. For example, if you have
a controller such as:

class BookController {
 layout = 'customer'static

def list() { … }
}

You can create a layout called which will be applied to all views that the grails-app/views/layouts/customer.gsp BookController
delegates to. The value of the "layout" property may contain a directory structure relative to the directory. Forgrails-app/views/layouts/
example:

class BookController {
 layout = 'custom/customer'static

def list() { … }
}

Views rendered from that controller would be decorated with the template.grails-app/views/layouts/custom/customer.gsp

Layout by Convention

Another way to associate layouts is to use "layout by convention". For example, if you have this controller:

257

class BookController {
 def list() { … }
}

You can create a layout called , which will be applied to all views that the grails-app/views/layouts/book.gsp BookController
delegates to.

Alternatively, you can create a layout called which will only be applied to the actiongrails-app/views/layouts/book/list.gsp list
within the .BookController

If you have both the above mentioned layouts in place the layout specific to the action will take precedence when the list action is executed.

If a layout may not be located using any of those conventions, the convention of last resort is to look for the application default layout which is
. The name of the application default layout may be changed by defining a property in grails-app/views/layouts/application.gsp

 as follows:grails-app/conf/application.groovy

grails.sitemesh. .layout = 'myLayoutName'default

With that property in place, the application default layout will be .grails-app/views/layouts/myLayoutName.gsp

Inline Layouts

Grails' also supports Sitemesh's concept of inline layouts with the tag. This can be used to apply a layout to a template, URL or arbitraryapplyLayout
section of content. This lets you even further modularize your view structure by "decorating" your template includes.

Some examples of usage can be seen below:

<g:applyLayout name= template= collection= />"myLayout" "bookTemplate" "${books}"

<g:applyLayout name= url= />"myLayout" "http://www.google.com"

<g:applyLayout name= >"myLayout"
The content to apply a layout to
</g:applyLayout>

Server-Side Includes

While the tag is useful for applying layouts to external content, if you simply want to include external content in the current page you use theapplyLayout
 tag:include

258

<g:include controller= action= />"book" "list"

You can even combine the tag and the tag for added flexibility:include applyLayout

<g:applyLayout name= >"myLayout"
 <g:include controller= action= />"book" "list"
</g:applyLayout>

Finally, you can also call the tag from a controller or tag library as a method:include

def content = include(controller: , action:)"book" "list"

The resulting content will be provided via the return value of the tag. include

8.2.5 Static Resources
Grails 2.0 integrates with the to provide sophisticated static asset management. This plugin is installed by default in new GrailsAsset Pipeline plugin
applications.

The basic way to include a link to a static asset in your application is to use the tag. This simple approach creates a URI pointing to the file.resource

However modern applications with dependencies on multiple JavaScript and CSS libraries and frameworks (as well as dependencies on multiple Grails
plugins) require something more powerful.

The issues that the Asset-Pipeline plugin tackles are:

Reduced Dependence - The plugin has compression, minification, and cache-digests built in.

Easy Debugging - Makes for easy debugging by keeping files separate in development mode.

Asset Bundling using require .directives

Web application performance tuning is difficult.

The need for a standard way to expose static assets in plugins and applications.

The need for extensible processing to make languages like LESS or Coffee first class citizens.

The asset-pipeline allows you to define your javascript or css requirements right at the top of the file and they get compiled on War creation.

http://grails.org/plugin/asset-pipeline
http://bertramdev.github.io/asset-pipeline/guide/usage.html#directives

259

Take a look at the for the asset-pipeline to get started.documentation

If you do not want to use the Asset-Pipeline plugin, you can serve the static assets from directories `src/main/resources/public` or `src/main/webapp`, but
the latter one only gets included in WAR packaging but not in JAR packaging.

8.2.6 Sitemesh Content Blocks
Although it is useful to decorate an entire page sometimes you may find the need to decorate independent sections of your site. To do this you can use
content blocks. To get started, partition the page to be decorated using the tag:<content>

<content tag= >"navbar"
… draw the navbar here…
</content>

<content tag= >"header"
… draw the header here…
</content>

<content tag= >"footer"
… draw the footer here…
</content>

<content tag= >"body"
… draw the body here…
</content>

Then within the layout you can reference these components and apply individual layouts to each:

<html>
 <body>
 <div id= >"header"
 <g:applyLayout name= >"headerLayout"
 <g:pageProperty name= />"page.header"
 </g:applyLayout>
 </div>
 <div id= >"nav"
 <g:applyLayout name= >"navLayout"
 <g:pageProperty name= />"page.navbar"
 </g:applyLayout>
 </div>
 <div id= >"body"
 <g:applyLayout name= >"bodyLayout"
 <g:pageProperty name= />"page.body"
 </g:applyLayout>
 </div>
 <div id= >"footer"
 <g:applyLayout name= >"footerLayout"
 <g:pageProperty name= />"page.footer"
 </g:applyLayout>
 </div>
 </body>
</html>

http://bertramdev.github.io/asset-pipeline

260

8.2.7 Making Changes to a Deployed Application
One of the main issues with deploying a Grails application (or typically any servlet-based one) is that any change to the views requires that you redeploy
your whole application. If all you want to do is fix a typo on a page, or change an image link, it can seem like a lot of unnecessary work. For such simple
requirements, Grails does have a solution: the configuration setting.grails.gsp.view.dir

How does this work? The first step is to decide where the GSP files should go. Let's say we want to keep them unpacked in a
 directory. We add these two lines to :/var/www/grails/my-app grails-app/conf/application.groovy

grails.gsp.enable.reload = true
grails.gsp.view.dir = "/ /www/grails/my-app/"var

The first line tells Grails that modified GSP files should be reloaded at runtime. If you don't have this setting, you can make as many changes as you like
but they won't be reflected in the running application until you restart. The second line tells Grails where to load the views and layouts from.

The trailing slash on the value is important! Without it, Grails will look for views in the parentgrails.gsp.view.dir
directory.

Setting "grails.gsp.view.dir" is optional. If it's not specified, you can update files directly to the application server's deployed war directory. Depending on
the application server, these files might get overwritten when the server is restarted. Most application servers support "exploded war deployment" which is
recommended in this case.

With those settings in place, all you need to do is copy the views from your web application to the external directory. On a Unix-like system, this would
look something like this:

mkdir -p / /www/grails/my-app/grails-app/viewsvar
cp -R grails-app/views/* / /www/grails/my-app/grails-app/viewsvar

The key point here is that you must retain the view directory structure, including the bit. So you end up with the path grails-app/views
 ./var/www/grails/my-app/grails-app/views/...

One thing to bear in mind with this technique is that every time you modify a GSP, it uses up permgen space. So at some point you will eventually hit "out
of permgen space" errors unless you restart the server. So this technique is not recommended for frequent or large changes to the views.

There are also some System properties to control GSP reloading:

Name Description

grails.gsp.enable.reload alternative system property for enabling the GSP reload mode without changing application.groovy

grails.gsp.reload.interval interval between checking the lastmodified time of the gsp source file, unit is milliseconds

grails.gsp.reload.granularity
the number of milliseconds leeway to give before deciding a file is out of date. this is needed because different
roundings usually cause a 1000ms difference in lastmodified times

261

GSP reloading is supported for precompiled GSPs since Grails 1.3.5 .

8.2.8 GSP Debugging

Viewing the generated source code

Adding "?showSource=true" or "&showSource=true" to the url shows the generated Groovy source code for the view instead of rendering it. It won't
show the source code of included templates. This only works in development mode

The saving of all generated source code can be activated by setting the property "grails.views.gsp.keepgenerateddir" (in) .application.groovy
It must point to a directory that exists and is writable.

During "grails war" gsp pre-compilation, the generated source code is stored in grails.project.work.dir/gspcompile (usually in
~/.grails/(grails_version)/projects/(project name)/gspcompile).

Debugging GSP code with a debugger

See Debugging GSP in STS

Viewing information about templates used to render a single url

GSP templates are reused in large web applications by using the taglib. Several small templates can be used to render a single page. It mightg:render
be hard to find out what GSP template actually renders the html seen in the result. The debug templates -feature adds html comments to the output. The
comments contain debug information about gsp templates used to render the page.

Usage is simple: append "?debugTemplates" or "&debugTemplates" to the url and view the source of the result in your browser. "debugTemplates" is
restricted to development mode. It won't work in production.

Here is an example of comments added by debugTemplates :

<!-- GSP #2 START template: /home/.../views/_carousel.gsp
 precompiled: lastmodified: … -->false
.
.
.
<!-- GSP #2 END template: /home/.../views/_carousel.gsp
 rendering time: 115 ms -->

Each comment block has a unique id so that you can find the start & end of each template call.

8.3 Tag Libraries
Like (JSP), GSP supports the concept of custom tag libraries. Unlike JSP, Grails' tag library mechanism is simple, elegant andJava Server Pages
completely reloadable at runtime.

Quite simply, to create a tag library create a Groovy class that ends with the convention and place it within the TagLib grails-app/taglib
directory:

http://contraptionsforprogramming.blogspot.com/2010/08/debuggable-gsps-in-springsource-tool.html
http://www.oracle.com/technetwork/java/javaee/jsp/index.html

262

class SimpleTagLib {

}

Now to create a tag create a Closure property that takes two arguments: the tag attributes and the body content:

class SimpleTagLib {
 def simple = { attrs, body ->

}
}

The argument is a Map of the attributes of the tag, whilst the argument is a Closure that returns the body content when invoked:attrs body

class SimpleTagLib {
 def emoticon = { attrs, body ->
 out << body() << (attrs.happy == ' ' ? :)true " :-)" " :-("
 }
}

As demonstrated above there is an implicit variable that refers to the output which you can use to append content to the response. Then youout Writer
can reference the tag inside your GSP; no imports are necessary:

<g:emoticon happy= >"true" Hi John</g:emoticon>

263

To help IDEs like Spring Tool Suite (STS) and others autocomplete tag attributes, you should add Javadoc comments to
your tag closures with descriptions. Since taglibs use Groovy code it can be difficult to reliably detect all usable@attr
attributes.

For example:

class SimpleTagLib {

/**
 * Renders the body with an emoticon.
 *
 * @attr happy whether to show a happy emoticon (' ') ortrue
 * a sad emoticon (' ')false
 */
 def emoticon = { attrs, body ->
 out << body() << (attrs.happy == ' ' ? :)true " :-)" " :-("
 }
}

and any mandatory attributes should include the REQUIRED keyword, e.g.

class SimpleTagLib {

/**
 * Creates a password field.new
 *
 * @attr name REQUIRED the field name
 * @attr value the field value
 */
 def passwordField = { attrs ->
 attrs.type = "password"
 attrs.tagName = "passwordField"
 fieldImpl(out, attrs)
 }
}

8.3.1 Variables and Scopes
Within the scope of a tag library there are a number of pre-defined variables including:

264

actionName - The currently executing action name

controllerName - The currently executing controller name

flash - The objectflash

grailsApplication - The instanceGrailsApplication

out - The response writer for writing to the output stream

pageScope - A reference to the object used for GSP rendering (i.e. the binding)pageScope

params - The object for retrieving request parametersparams

pluginContextPath - The context path to the plugin that contains the tag library

request - The instanceHttpServletRequest

response - The instanceHttpServletResponse

servletContext - The instancejavax.servlet.ServletContext

session - The instanceHttpSession

8.3.2 Simple Tags
As demonstrated in the previous example it is easy to write simple tags that have no body and just output content. Another example is a dateFormat
style tag:

def dateFormat = { attrs, body ->
 out << java.text.SimpleDateFormat(attrs.format).format(attrs.date)new
}

The above uses Java's class to format a date and then write it to the response. The tag can then be used within a GSP as follows:SimpleDateFormat

<g:dateFormat format= date= />"dd-MM-yyyy" "${new Date()}"

With simple tags sometimes you need to write HTML mark-up to the response. One approach would be to embed the content directly:

http://grails.github.io/grails-doc/3.0.x/api/grails/core/GrailsApplication.html
http://download.oracle.com/javaee/1.4/api/javax/servlet/http/HttpServletRequest.html
http://download.oracle.com/javaee/1.4/api/javax/servlet/http/HttpServletResponse.html
http://download.oracle.com/javaee/1.4/api/javax/servlet/ServletContext.html
http://download.oracle.com/javaee/1.4/api/javax/servlet/http/HttpSession.html

265

def formatBook = { attrs, body ->
 out << "<div id="${attrs.book.id}">"
 out << "Title : ${attrs.book.title}"
 out << "</div>"
}

Although this approach may be tempting it is not very clean. A better approach would be to reuse the tag:render

def formatBook = { attrs, body ->
 out << render(template: , model: [book: attrs.book])"bookTemplate"
}

And then have a separate GSP template that does the actual rendering.

8.3.3 Logical Tags
You can also create logical tags where the body of the tag is only output once a set of conditions have been met. An example of this may be a set of
security tags:

def isAdmin = { attrs, body ->
 def user = attrs.user
 (user && checkUserPrivs(user)) {if
 out << body()
 }
}

The tag above checks if the user is an administrator and only outputs the body content if he/she has the correct set of access privileges:

<g:isAdmin user= >"${myUser}"
 // some restricted content
</g:isAdmin>

8.3.4 Iterative Tags

266

Iterative tags are easy too, since you can invoke the body multiple times:

def repeat = { attrs, body ->
 attrs.times?.toInteger()?.times { num ->
 out << body(num)
 }
}

In this example we check for a attribute and if it exists convert it to a number, then use Groovy's method to iterate the specified number oftimes times
times:

<g:repeat times= >"3"
Repeat this 3 times! Current repeat = ${it}<p> </p>

</g:repeat>

Notice how in this example we use the implicit variable to refer to the current number. This works because when we invoked the body we passed init
the current value inside the iteration:

out << body(num)

That value is then passed as the default variable to the tag. However, if you have nested tags this can lead to conflicts, so you should instead name theit
variables that the body uses:

def repeat = { attrs, body ->
 def = attrs. ?: var var "num"
 attrs.times?.toInteger()?.times { num ->
 out << body(():num)var
 }
}

Here we check if there is a attribute and if there is use that as the name to pass into the body invocation on this line:var

267

out << body(():num)var

Note the usage of the parenthesis around the variable name. If you omit these Groovy assumes you are using a String key
and not referring to the variable itself.

Now we can change the usage of the tag as follows:

<g:repeat times= var= >"3" "j"
Repeat this 3 times! Current repeat = ${j}<p> </p>

</g:repeat>

Notice how we use the attribute to define the name of the variable and then we are able to reference that variable within the body of the tag. var j

8.3.5 Tag Namespaces
By default, tags are added to the default Grails namespace and are used with the prefix in GSP pages. However, you can specify a different namespaceg:
by adding a static property to your class:TagLib

class SimpleTagLib {
 namespace = static "my"

def example = { attrs ->
 …
 }
}

Here we have specified a of and hence the tags in this tag lib must then be referenced from GSP pages like this:namespace my

<my:example name= />"..."

where the prefix is the same as the value of the static property. Namespaces are particularly useful for plugins.namespace

268

Tags within namespaces can be invoked as methods using the namespace as a prefix to the method call:

out << my.example(name:)"foo"

This works from GSP, controllers or tag libraries

8.3.6 Using JSP Tag Libraries
In addition to the simplified tag library mechanism provided by GSP, you can also use JSP tags from GSP. To do so simply declare the JSP to use with the

 directive:taglib

<%@ taglib prefix= uri= %>"fmt" "http://java.sun.com/jsp/jstl/fmt"

Besides this you have to configure Grails to scan for the JSP tld files. This is configured with the setting. It accepts agrails.gsp.tldScanPattern
comma separated String value. Spring's PathMatchingResourcePatternResolver is used to resolve the patterns.

For example you could scan for all available tld files by adding this to :application.groovy

grails.gsp.tldScanPattern='classpath*:/META-INF/*.tld,/WEB-INF/tld/*.tld'

JSTL standard library is no more added as a dependency by default. In case you are using JSTL, you should also add these dependencies to
:build.gradle

runtime 'javax.servlet:jstl:1.1.2'
 runtime 'taglibs:standard:1.1.2'

Then you can use JSP tags like any other tag:

269

<fmt:formatNumber value= pattern= />"${10}" ".00"

With the added bonus that you can invoke JSP tags like methods:

${fmt.formatNumber(value:10, pattern:)}".00"

8.3.7 Tag return value
A taglib can be used in a GSP as an ordinary tag or it might be used as a function in other taglibs or GSP expressions.

Internally Grails intercepts calls to taglib closures. The "out" that is available in a taglib is mapped to a implementation that writes tojava.io.Writer
a buffer that "captures" the output of the taglib call. This buffer is the return value of a tag library call when it's used as a function.

If the tag is listed in the library's static array, then its return value will written to the output when it's used as a normal tag.returnObjectForTags
The return value of the tag lib closure will be returned as-is if it's used as a function in GSP expressions or other taglibs.

If the tag is not included in the returnObjectForTags array, then its return value will be discarded. Using "out" to write output in returnObjectForTags is
not supported.

Example:

class ObjectReturningTagLib {
 namespace = static "cms"
 returnObjectForTags = ['content']static

def content = { attrs, body ->
 CmsContent.findByCode(attrs.code)?.content
 }
}

Given this example cms.content(code:'something') call in another taglib or GSP expression would return the value "CmsContent.content" directly to the
caller without wrapping the return value in a buffer. It might be worth doing so also because of performance optimization reasons. There is no need to
wrap the tag return value in an output buffer in such cases.

8.4 URL Mappings
Throughout the documentation so far the convention used for URLs has been the default of . However, this convention is/controller/action/id
not hard wired into Grails and is in fact controlled by a URL Mappings class located at .grails-app/controllers/UrlMappings.groovy

The class contains a single property called that has been assigned a block of code:UrlMappings mappings

270

class UrlMappings {
 mappings = {static
 }
}

8.4.1 Mapping to Controllers and Actions
To create a simple mapping simply use a relative URL as the method name and specify named parameters for the controller and action to map to:

"/product"(controller: , action:)"product" "list"

In this case we've mapped the URL to the action of the . Omit the action definition to map to the default/product list ProductController
action of the controller:

"/product"(controller:)"product"

An alternative syntax is to assign the controller and action to use within a block passed to the method:

"/product" {
 controller = "product"
 action = "list"
}

Which syntax you use is largely dependent on personal preference.

If you have mappings that all fall under a particular path you can group mappings with the method:group

271

group , {"/product"
 (controller: , id:)"/apple" "product" "apple"
 (controller: , id:)"/htc" "product" "htc"
}

You can also create nested url mappings:group

group , {"/store"
 group , {"/product"
 (controller:)"/$id" "product"
 }
}

To rewrite one URI onto another explicit URI (rather than a controller/action pair) do something like this:

"/hello"(uri:)"/hello.dispatch"

Rewriting specific URIs is often useful when integrating with other frameworks.

8.4.2 Mapping to REST resources
Since Grails 2.3, it possible to create RESTful URL mappings that map onto controllers by convention. The syntax to do so is as follows:

"/books"(resources:'book')

You define a base URI and the name of the controller to map to using the parameter. The above mapping will result in the following URLs:resources

272

HTTP Method URI Grails Action

GET /books index

GET /books/create create

POST /books save

GET /books/${id} show

GET /books/${id}/edit edit

PUT /books/${id} update

DELETE /books/${id} delete

If you are not sure which mapping will be generated for your case just run the command in your grails console. It will giveurl-mappings-report
you a really neat report for all the url mappings.

If you wish to include or exclude any of the generated URL mappings you can do so with the or parameter, which accepts theincludes excludes
name of the Grails action to include or exclude:

"/books"(resources:'book', excludes:['delete', 'update'])

or

(resources:'book', includes:['index', 'show'])"/books"

Explicit REST Mappings

As of Grails 3.1, if you prefer not to rely on the a mapping to define your mappings then you can prefix any URL mapping with the HTTPresources
method name (in lower case) to indicate the HTTP method it applies to. The following URL mapping:

"/books"(resources:'book')

Is equivalent to:

273

get (controller: , action:)"/books" "book" "index"
get (controller: , action:)"/books/create" "book" "create"
post (controller: , action:)"/books" "book" "save"
get (controller: , action:)"/books/$id" "book" "show"
get (controller: , action:)"/books/$id/edit" "book" "edit"
put (controller: , action:)"/books/$id" "book" "update"
delete (controller: , action:)"/books/$id" "book" "delete"

Notice how the HTTP method name is prefixed prior to each URL mapping definition.

Single resources

A single resource is a resource for which there is only one (possibly per user) in the system. You can create a single resource using the resource
parameter (as oppose to):resources

"/book"(resource:'book')

This results in the following URL mappings:

HTTP Method URI Grails Action

GET /book/create create

POST /book save

GET /book show

GET /book/edit edit

PUT /book update

DELETE /book delete

The main difference is that the id is not included in the URL mapping.

Nested Resources

You can nest resource mappings to generate child resources. For example:

274

"/books"(resources:'book') {
 (resources:)"/authors" "author"
}

The above will result in the following URL mappings:

HTTP Method URL Grails Action

GET /books/${bookId}/authors index

GET /books/${bookId}/authors/create create

POST /books/${bookId}/authors save

GET /books/${bookId}/authors/${id} show

GET /books/${bookId}/authors/edit/${id} edit

PUT /books/${bookId}/authors/${id} update

DELETE /books/${bookId}/authors/${id} delete

You can also nest regular URL mappings within a resource mapping:

"/books"(resources:) {"book"
 (controller:)"/publisher" "publisher"
}

This will result in the following URL being available:

HTTP Method URL Grails Action

GET /books/1/publisher index

To map a URI directly below a resource then use a collection:

"/books"(resources:) {"book"
 collection {
 (controller:) "/publisher" "publisher"
 }
}

275

This will result in the following URL being available (without the ID):

HTTP Method URL Grails Action

GET /books/publisher index

Linking to RESTful Mappings

You can link to any URL mapping created with the tag provided by Grails simply by referencing the controller and action to link to:g:link

<g:link controller= action= >My Link</g:link>"book" "index"

As a convenience you can also pass a domain instance to the attribute of the tag:resource link

<g:link resource= >My Link</g:link>"${book}"

This will automatically produce the correct link (in this case "/books/1" for an id of "1").

The case of nested resources is a little different as they typically required two identifiers (the id of the resource and the one it is nested within). For
example given the nested resources:

"/books"(resources:'book') {
 (resources:)"/authors" "author"
}

If you wished to link to the action of the controller, you would write:show author

// Results in /books/1/authors/2
<g:link controller= action= method= params= id= >The Author</g:link>"author" "show" "GET" "[bookId:1]" "2"

276

However, to make this more concise there is a attribute to the link tag which can be used instead:resource

// Results in /books/1/authors/2
<g:link resource= action= bookId= id= >My Link</g:link>"book/author" "show" "1" "2"

The resource attribute accepts a path to the resource separated by a slash (in this case "book/author"). The attributes of the tag can be used to specify the
necessary parameter. bookId

8.4.3 Redirects In URL Mappings
Since Grails 2.3, it is possible to define URL mappings which specify a redirect. When a URL mapping specifies a redirect, any time that mapping
matches an incoming request, a redirect is initiated with information provided by the mapping.

When a URL mapping specifies a redirect the mapping must either supply a String representing a URI to redirect to or must provide a Map representing
the target of the redirect. That Map is structured just like the Map that may be passed as an argument to the method in a controller.redirect

"/viewBooks"(redirect: '/books/list')
(redirect: [controller: 'author', action: 'list'])"/viewAuthors"

(redirect: [controller: 'publisher', action: 'list', permanent:])"/viewPublishers" true

Request parameters that were part of the original request will be included in the redirect.

8.4.4 Embedded Variables

Simple Variables

The previous section demonstrated how to map simple URLs with concrete "tokens". In URL mapping speak tokens are the sequence of characters
between each slash, '/'. A concrete token is one which is well defined such as as . However, in many circumstances you don't know what the/product
value of a particular token will be until runtime. In this case you can use variable placeholders within the URL for example:

static mappings = {
 (controller:)"/product/$id" "product"
}

In this case by embedding a $id variable as the second token Grails will automatically map the second token into a parameter (available via the params
object) called . For example given the URL , the following code will render "MacBook" to the response:id /product/MacBook

277

class ProductController {
 def index() { render params.id }
}

You can of course construct more complex examples of mappings. For example the traditional blog URL format could be mapped as follows:

static mappings = {
 (controller: , action:)"/$blog/$year/$month/$day/$id" "blog" "show"
}

The above mapping would let you do things like:

/graemerocher/2007/01/10/my_funky_blog_entry

The individual tokens in the URL would again be mapped into the object with values available for , , , and so on.params year month day id

Dynamic Controller and Action Names

Variables can also be used to dynamically construct the controller and action name. In fact the default Grails URL mappings use this technique:

static mappings = {
 ()"/$controller/$action?/$id?"
}

Here the name of the controller, action and id are implicitly obtained from the variables , and embedded within the URL.controller action id

You can also resolve the controller name and action name to execute dynamically using a closure:

278

static mappings = {
 {"/$controller"
 action = { params.goHere }
 }
}

Optional Variables

Another characteristic of the default mapping is the ability to append a ? at the end of a variable to make it an optional token. In a further example this
technique could be applied to the blog URL mapping to have more flexible linking:

static mappings = {
 (controller: , action:)"/$blog/$year?/$month?/$day?/$id?" "blog" "show"
}

With this mapping all of these URLs would match with only the relevant parameters being populated in the object:params

/graemerocher/2007/01/10/my_funky_blog_entry
/graemerocher/2007/01/10
/graemerocher/2007/01
/graemerocher/2007
/graemerocher

Optional File Extensions

If you wish to capture the extension of a particular path, then a special case mapping exists:

"/$controller/$action?/$id?(.$format)?"()

By adding the mapping you can access the file extension using the property in a controller:(.$format)? response.format

279

def index() {
 render "extension is ${response.format}"
}

Arbitrary Variables

You can also pass arbitrary parameters from the URL mapping into the controller by just setting them in the block passed to the mapping:

"/holiday/win" {
 id = "Marrakech"
 year = 2007
}

This variables will be available within the object passed to the controller.params

Dynamically Resolved Variables

The hard coded arbitrary variables are useful, but sometimes you need to calculate the name of the variable based on runtime factors. This is also possible
by assigning a block to the variable name:

"/holiday/win" {
 id = { params.id }
 isEligible = { session.user != } // must be logged innull
}

In the above case the code within the blocks is resolved when the URL is actually matched and hence can be used in combination with all sorts of logic.

8.4.5 Mapping to Views
You can resolve a URL to a view without a controller or action involved. For example to map the root URL to a GSP at the location /

 you could use:grails-app/views/index.gsp

280

static mappings = {
 (view:) // map the root URL"/" "/index"
}

Alternatively if you need a view that is specific to a given controller you could use:

static mappings = {
 (controller: , view:) // to a view a controller"/help" "site" "help" for
}

8.4.6 Mapping to Response Codes
Grails also lets you map HTTP response codes to controllers, actions or views. Just use a method name that matches the response code you are interested
in:

static mappings = {
 (controller: , action:)"403" "errors" "forbidden"
 (controller: , action:)"404" "errors" "notFound"
 (controller: , action:)"500" "errors" "serverError"
}

Or you can specify custom error pages:

static mappings = {
 (view:)"403" "/errors/forbidden"
 (view:)"404" "/errors/notFound"
 (view:)"500" "/errors/serverError"
}

Declarative Error Handling

In addition you can configure handlers for individual exceptions:

281

static mappings = {
 (view:)"403" "/errors/forbidden"
 (view:)"404" "/errors/notFound"
 (controller: , action: ,"500" "errors" "illegalArgument"
 exception: IllegalArgumentException)
 (controller: , action: ,"500" "errors" "nullPointer"
 exception: NullPointerException)
 (controller: , action: ,"500" "errors" "customException"
 exception: MyException)
 (view:)"500" "/errors/serverError"
}

With this configuration, an will be handled by the action in , a IllegalArgumentException illegalArgument ErrorsController
 will be handled by the action, and a will be handled by the action.NullPointerException nullPointer MyException customException

Other exceptions will be handled by the catch-all rule and use the view./errors/serverError

You can access the exception from your custom error handing view or controller action using the request's attribute like so:exception

class ErrorController {
 def handleError() {
 def exception = request.exception
 // perform desired processing to handle the exception
 }
}

If your error-handling controller action throws an exception as well, you'll end up with a .StackOverflowException

8.4.7 Mapping to HTTP methods
URL mappings can also be configured to map based on the HTTP method (GET, POST, PUT or DELETE). This is very useful for RESTful APIs and for
restricting mappings based on HTTP method.

As an example the following mappings provide a RESTful API URL mappings for the :ProductController

static mappings = {
 (controller: , action: , method:) "/product/$id" "product" "update" "PUT"
}

282

8.4.8 Mapping Wildcards
Grails' URL mappings mechanism also supports wildcard mappings. For example consider the following mapping:

static mappings = {
 (controller:)"/images/*.jpg" "image"
}

This mapping will match all paths to images such as . Of course you can achieve the same effect with a variable:/image/logo.jpg

static mappings = {
 (controller:)"/images/$name.jpg" "image"
}

However, you can also use double wildcards to match more than one level below:

static mappings = {
 (controller:)"/images/**.jpg" "image"
}

In this cases the mapping will match as well as . Even better you can use a double wildcard/image/logo.jpg /image/other/logo.jpg
variable:

static mappings = {
 // will match /image/logo.jpg and /image/other/logo.jpg
 (controller:)"/images/$name**.jpg" "image"
}

In this case it will store the path matched by the wildcard inside a parameter obtainable from the object:name params

283

def name = params.name
println name // prints or "logo" "other/logo"

If you use wildcard URL mappings then you may want to exclude certain URIs from Grails' URL mapping process. To do this you can provide an
 setting inside the class:excludes UrlMappings.groovy

class UrlMappings {
 excludes = [,]static "/images/*" "/css/*"
 mappings = {static
 …
 }
}

In this case Grails won't attempt to match any URIs that start with or . /images /css

8.4.9 Automatic Link Re-Writing
Another great feature of URL mappings is that they automatically customize the behaviour of the tag so that changing the mappings don't require youlink
to go and change all of your links.

This is done through a URL re-writing technique that reverse engineers the links from the URL mappings. So given a mapping such as the blog one from
an earlier section:

static mappings = {
 (controller: , action:)"/$blog/$year?/$month?/$day?/$id?" "blog" "show"
}

If you use the link tag as follows:

284

<g:link controller= action="blog" "show"
 params= >"[blog:'fred', year:2007]"
 My Blog
</g:link>

<g:link controller= action="blog" "show"
 params= >"[blog:'fred', year:2007, month:10]"
 My Blog - October 2007 Posts
</g:link>

Grails will automatically re-write the URL in the correct format:

"/fred/2007" My Blog
My Blog - October 2007 Posts"/fred/2007/10"

8.4.10 Applying Constraints
URL Mappings also support Grails' unified mechanism, which lets you further "constrain" how a URL is matched. For example, ifvalidation constraints
we revisit the blog sample code from earlier, the mapping currently looks like this:

static mappings = {
 (controller: , action:)"/$blog/$year?/$month?/$day?/$id?" "blog" "show"
}

This allows URLs such as:

/graemerocher/2007/01/10/my_funky_blog_entry

However, it would also allow:

285

/graemerocher/not_a_year/not_a_month/not_a_day/my_funky_blog_entry

This is problematic as it forces you to do some clever parsing in the controller code. Luckily, URL Mappings can be constrained to further validate the
URL tokens:

"/$blog/$year?/$month?/$day?/$id?" {
 controller = "blog"
 action = "show"
 constraints {
 year(matches:/\d{4}/)
 month(matches:/\d{2}/)
 day(matches:/\d{2}/)
 }
}

In this case the constraints ensure that the , and parameters match a particular valid pattern thus relieving you of that burden later on. year month day

8.4.11 Named URL Mappings
URL Mappings also support named mappings, that is mappings which have a name associated with them. The name may be used to refer to a specific
mapping when links are generated.

The syntax for defining a named mapping is as follows:

static mappings = {
 name <mapping name>: <url pattern> {
 // …
 }
}

For example:

286

static mappings = {
 name personList: {"/showPeople"
 controller = 'person'
 action = 'list'
 }
 name accountDetails: {"/details/$acctNumber"
 controller = 'product'
 action = 'accountDetails'
 }
}

The mapping may be referenced in a link tag in a GSP.

<g:link mapping= >"personList" List People</g:link>

That would result in:

"/showPeople" List People

Parameters may be specified using the params attribute.

<g:link mapping= params= >"accountDetails" "[acctNumber:'8675309']"
 Show Account
</g:link>

That would result in:

"/details/8675309" Show Account

287

Alternatively you may reference a named mapping using the link namespace.

<link:personList>List People</link:personList>

That would result in:

"/showPeople" List People

The link namespace approach allows parameters to be specified as attributes.

<link:accountDetails acctNumber= >"8675309" Show Account</link:accountDetails>

That would result in:

"/details/8675309" Show Account

To specify attributes that should be applied to the generated , specify a value to the attribute. These attributes will be applied directly tohref Map attrs
the href, not passed through to be used as request parameters.

<link:accountDetails attrs= acctNumber= >"[class: 'fancy']" "8675309"
 Show Account
</link:accountDetails>

That would result in:

288

"/details/8675309" "fancy" Show Account

8.4.12 Customizing URL Formats
The default URL Mapping mechanism supports camel case names in the URLs. The default URL for accessing an action named in aaddNumbers
controller named would be something like . Grails allows for the customization of thisMathHelperController /mathHelper/addNumbers
pattern and provides an implementation which replaces the camel case convention with a hyphenated convention that would support URLs like

. To enable hyphenated URLs assign a value of "hyphenated" to the property in /math-helper/add-numbers grails.web.url.converter
.grails-app/conf/application.groovy

// grails-app/conf/application.groovy

grails.web.url.converter = 'hyphenated'

Arbitrary strategies may be plugged in by providing a class which implements the interface and adding an instance of that class to the SpringUrlConverter
application context with the bean name of . If Grails finds a bean in the context with that name, it will begrails.web.UrlConverter.BEAN_NAME
used as the default converter and there is no need to assign a value to the config property.grails.web.url.converter

// src/groovy/com/myapplication/MyUrlConverterImpl.groovy

 com.myapplicationpackage

class MyUrlConverterImpl grails.web.UrlConverter {implements

 toUrlElement(propertyOrClassName) {String String
 // some representation of a property or class name that should be used in URLs…return
 }
}

// grails-app/conf/spring/resources.groovy

beans = {
 (com.myapplication.MyUrlConverterImpl)"${grails.web.UrlConverter.BEAN_NAME}"
}

http://grails.github.io/grails-doc/3.0.x/api/grails/web/UrlConverter.html

289

8.4.13 Namespaced Controllers
If an application defines multiple controllers with the same name in different packages, the controllers must be defined in a namespace. The way to define
a namespace for a controller is to define a static property named in the controller and assign a String to the property that represents thenamespace
namespace.

// grails-app/controllers/com/app/reporting/AdminController.groovy
 com.app.reportingpackage

class AdminController {

 namespace = 'reports'static

// …
}

// grails-app/controllers/com/app/security/AdminController.groovy
 com.app.securitypackage

class AdminController {

 namespace = 'users'static

// …
}

When defining url mappings which should be associated with a namespaced controller, the variable needs to be part of the URL mapping.namespace

// grails-app/controllers/UrlMappings.groovy
class UrlMappings {

 mappings = {static
 '/userAdmin' {
 controller = 'admin'
 namespace = 'users'
 }

'/reportAdmin' {
 controller = 'admin'
 namespace = 'reports'
 }

()"/$namespace/$controller/$action?"
 }
}

290

Reverse URL mappings also require that the be specified.namespace

<g:link controller= namespace= >Click For Report Admin</g:link>"admin" "reports"
<g:link controller= namespace= >Click For User Admin</g:link>"admin" "users"

When resolving a URL mapping (forward or reverse) to a namespaced controller, a mapping will only match if the has been provided. If thenamespace
application provides several controllers with the same name in different packages, at most 1 of them may be defined without a property. Ifnamespace
there are multiple controllers with the same name that do not define a property, the framework will not know how to distinguish betweennamespace
them for forward or reverse mapping resolutions.

It is allowed for an application to use a plugin which provides a controller with the same name as a controller provided by the application and for neither
of the controllers to define a property as long as the controllers are in separate packages. For example, an application may include anamespace
controller named and the application may use a plugin which provides a controller named com.accounting.ReportingController

. The only issue with that is the URL mapping for the controller provided by the plugin needs tocom.humanresources.ReportingController
be explicit in specifying that the mapping applies to the which is provided by the plugin.ReportingController

See the following example.

static mappings = {
 {"/accountingReports"
 controller = "reporting"
 }
 {"/humanResourceReports"
 controller = "reporting"
 plugin = "humanResources"
 }
}

With that mapping in place, a request to will be handled by the which is defined in the/accountingReports ReportingController
application. A request to will be handled by the which is provided by the /humanResourceReports ReportingController

 plugin.humanResources

There could be any number of controllers provided by any number of plugins but no plugin may provide more than one ReportingController
 even if they are defined in separate packages.ReportingController

Assigning a value to the variable in the mapping is only required if there are multiple controllers with the same name available at runtimeplugin
provided by the application and/or plugins. If the plugin provides a and there is no other humanResources ReportingController

 available at runtime, the following mapping would work.ReportingController

291

static mappings = {
 {"/humanResourceReports"
 controller = "reporting"
 }
}

It is best practice to be explicit about the fact that the controller is being provided by a plugin.

8.5 Interceptors
Grails provides standalone Interceptors using the command:create-interceptor

$ grails create-interceptor MyInterceptor

The above command will create an Interceptor in the directory with the following default contents:grails-app/controllers

class MyInterceptor {

 before() { }boolean true

 after() { }boolean true

void afterView() {
 // no-op
 }

}

Interceptors vs Filters

In versions of Grails prior to Grails 3.0, Grails supported the notion of filters. These are still supported for backwards compatibility but are considered
deprecated.

The new interceptors concept in Grails 3.0 is superior in a number of ways, most significantly interceptors can use Groovy's CompileStatic
annotation to optimize performance (something which is often critical as interceptors can be executed for every request.)

8.5.1 Defining Interceptors
By default interceptors will match the controllers with the same name. For example if you have an interceptor called then allBookInterceptor
requests to the actions of the will trigger the interceptor.BookController

292

An implements the trait and provides 3 methods that can be used to intercept requests:Interceptor Interceptor

/**
 * Executed before a matched action
 *
 * @ Whether the action should and executereturn continue
 */

 before() { }boolean true

/**
 * Executed after the action executes but prior to view rendering
 *
 * @ True view rendering should , otherwisereturn if continue false
 */

 after() { }boolean true

/**
 * Executed after view rendering completes
 */
void afterView() {}

As described above the method is executed prior to an action and can cancel the execution of the action by returning .before false

The method is executed after an action executes and can halt view rendering if it returns false. The method can also modify the view orafter after
model using the and properties respectively:view model

boolean after() {
 model.foo = // add a model attribute called 'foo'"bar" new
 view = 'alternate' // render a different view called 'alternate'
 true
}

The method is executed after view rendering completes. If an exception occurs, the exception is available using the propertyafterView throwable
of the trait.Interceptor

8.5.2 Matching Requests with Inteceptors
As mention in the previous section, by default an interceptor will match only requests to the associated controller by convention. However you can
configure the interceptor to match any request using the or methods defined in the .match matchAll Interceptor API

The matching methods return a instance which can be used to configure how the interceptor matches the request.Matcher

For example the following interceptor will match all requests except those to the controller:login

http://grails.github.io/grails-doc/3.0.x/api/grails/artefact/Interceptor.html
http://grails.github.io/grails-doc/3.0.x/api/grails/artefact/Interceptor.html
http://grails.github.io/grails-doc/3.0.x/api/grails/artefact/Interceptor.html
http://grails.github.io/grails-doc/3.0.x/api/grails/interceptors/Matcher.html

293

class AuthInterceptor {
 AuthInterceptor() {
 matchAll()
 .excludes(controller:)"login"
 }

 before() {boolean
 // perform authentication
 }
}

You can also perform matching using named argument:

class LoggingInterceptor {
 LoggingInterceptor() {
 match(controller: , action:) // using strings"book" "show"
 match(controller: ~/(author|publisher)/) // using regex
 }

 before() {boolean
 …
 }
}

You can use any number of matchers defined in your interceptor. They will be executed in the order in which they have been defined. For example the
above interceptor will match for all of the following:

when the action of is calledshow BookController

when or is calledAuthorController PublisherController

All named arguments except for accept either a String or a Regex expression. The argument supports a String path that is compatible withuri uri
Spring's . The possible named arguments are:AntPathMatcher

namespace - The namespace of the controller

controller - The name of the controller

action - The name of the action

method - The HTTP method

uri - The URI of the request. If this argument is used then all other arguments will be ignored and only this will be used.

8.5.3 Ordering Interceptor Execution
Interceptors can be ordered by defining an property that defines a priority.order

For example:

http://docs.spring.io/spring/docs/4.0.x/javadoc-api/org/springframework/util/AntPathMatcher.html

294

class AuthInterceptor {

 order = HIGHEST_PRECEDENCEint

…
}

The default value of the property is 0.order

The values and can be used to define filters that should should run first or last respectively.HIGHEST_PRECEDENCE LOWEST_PRECEDENCE

Note that if you write an interceptor that is to be used by others it is better increment or decrement the and HIGHEST_PRECEDENCE
 to allow other interceptors to be inserted before or after the interceptor you are authoring:LOWEST_PRECEDENCE

int order = HIGHEST_PRECEDENCE + 50

// or

 order = LOWEST_PRECEDENCE - 50int

To find out the computed order of interceptors you can add a debug logger to as follows:logback.groovy

logger 'grails.artefact.Interceptor', DEBUG, ['STDOUT'], false

You can override any interceptors default order by using bean override configuration in :grails-app/conf/application.yml

beans:
 authInterceptor:
 order: 50

Or in :grails-app/conf/application.groovy

295

beans {
 authInterceptor {
 order = 50
 }
}

Thus giving you complete control over interceptor execution order.

8.6 Content Negotiation
Grails has built in support for using either the HTTP header, an explicit format request parameter or the extension of aContent negotiation Accept
mapped URI.

Configuring Mime Types

Before you can start dealing with content negotiation you need to tell Grails what content types you wish to support. By default Grails comes configured
with a number of different content types within using the setting:grails-app/conf/application.yml grails.mime.types

grails:
 mime:
 types:
 all: '*/*'
 atom: application/atom+xml
 css: text/css
 csv: text/csv
 form: application/x-www-form-urlencoded
 html:
 - text/html
 - application/xhtml+xml
 js: text/javascript
 json:
 - application/json
 - text/json
 multipartForm: multipart/form-data
 rss: application/rss+xml
 text: text/plain
 hal:
 - application/hal+json
 - application/hal+xml
 xml:
 - text/xml
 - application/xml

The setting can also be done in as shown below:grails-app/conf/application.groovy

http://en.wikipedia.org/wiki/Content_negotiation

296

grails.mime.types = [// the first one is the formatdefault
 all: '*/*', // 'all' maps to '*' or the first available format in withFormat
 atom: 'application/atom+xml',
 css: 'text/css',
 csv: 'text/csv',
 form: 'application/x-www-form-urlencoded',
 html: ['text/html','application/xhtml+xml'],
 js: 'text/javascript',
 json: ['application/json', 'text/json'],
 multipartForm: 'multipart/form-data',
 rss: 'application/rss+xml',
 text: 'text/plain',
 hal: ['application/hal+json','application/hal+xml'],
 xml: ['text/xml', 'application/xml']
]

The above bit of configuration allows Grails to detect to format of a request containing either the 'text/xml' or 'application/xml' media types as simply
'xml'. You can add your own types by simply adding new entries into the map. The first one is the default format.

Content Negotiation using the format Request Parameter

Let's say a controller action can return a resource in a variety of formats: HTML, XML, and JSON. What format will the client get? The easiest and most
reliable way for the client to control this is through a URL parameter.format

So if you, as a browser or some other client, want a resource as XML, you can use a URL like this:

http://my.domain.org/books?format=xml

The result of this on the server side is a property on the object with the value .format response xml

You can also define this parameter in the definition:URL Mappings

"/book/list"(controller: , action:) {"book" "list"
 format = "xml"
}

You could code your controller action to return XML based on this property, but you can also make use of the controller-specific withFormat()
method:

297

import grails.converters.JSON
 grails.converters.XMLimport

class BookController {

def list() {
 def books = Book.list()

withFormat {
 html bookList: books
 json { render books as JSON }
 xml { render books as XML }
 '*' { render books as JSON }
 }
 }
}

In this example, Grails will only execute the block inside that matches the requested content type. So if the preferred format is withFormat() html
then Grails will execute the call only. Each 'block' can either be a map model for the corresponding view (as we are doing for 'html' in the abovehtml()
example) or a closure. The closure can contain any standard action code, for example it can return a model or render content directly.

When no format matches explicitly, a (wildcard) block can be used to handle all other formats.

There is a special format, "all", that is handled differently from the explicit formats. If "all" is specified (normally this happens through the
(wildcard) block available.Accept header - see below), then the first block of is executed when there isn't a withFormat()

You should not add an explicit "all" block. In this example, a format of "all" will trigger the handler (is the first block and there is no html html *
block).

withFormat {
 html bookList: books
 json { render books as JSON }
 xml { render books as XML }
 }

When using make sure it is the last call in your controller action as the return value of the withFormat withFormat
method is used by the action to dictate what happens next.

Using the Accept header

Every incoming HTTP request has a special header that defines what media types (or mime types) a client can "accept". In older browsers this isAccept
typically:

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

298

/

which simply means anything. However, newer browsers send more interesting values such as this one sent by Firefox:

text/xml, application/xml, application/xhtml+xml, text/html;q=0.9,
 text/plain;q=0.8, image/png, */*;q=0.5

This particular accept header is unhelpful because it indicates that XML is the preferred response format whereas the user is really expecting HTML.
That's why Grails ignores the accept header by default for browsers. However, non-browser clients are typically more specific in their requirements and
can send accept headers such as

application/json

As mentioned the default configuration in Grails is to ignore the accept header for browsers. This is done by the configuration setting
, which is configured to detect the major rendering engines and ignore their ACCEPTgrails.mime.disable.accept.header.userAgents

headers. This allows Grails' content negotiation to continue to work for non-browser clients:

grails.mime.disable.accept.header.userAgents = ['Gecko', 'WebKit', 'Presto', 'Trident']

For example, if it sees the accept header above ('application/json') it will set to as you'd expect. And of course this works with the format json
 method in just the same way as when the URL parameter is set (although the URL parameter takes precedence).withFormat() format

An accept header of '*/*' results in a value of for the property.all format

If the accept header is used but contains no registered content types, Grails will assume a broken browser is making the
request and will set the HTML format - note that this is different from how the other content negotiation modes work as
those would activate the "all" format!

Request format vs. Response format

299

As of Grails 2.0, there is a separate notion of the format and the format. The request format is dictated by the headerrequest response CONTENT_TYPE
and is typically used to detect if the incoming request can be parsed into XML or JSON, whilst the response format uses the file extension, format
parameter or ACCEPT header to attempt to deliver an appropriate response to the client.

The available on controllers deals specifically with the response format. If you wish to add logic that deals with the request format then youwithFormat
can do so using a separate method available on the request:withFormat

request.withFormat {
 xml {
 // read XML
 }
 json {
 // read JSON
 }
}

Content Negotiation with URI Extensions

Grails also supports content negotiation using URI extensions. For example given the following URI:

/book/list.xml

This works as a result of the default URL Mapping definition which is:

"/$controller/$action?/$id?(.$format)?"{

Note the inclusion of the variable in the path. If you do not wish to use content negotiation via the file extension then simply remove this part offormat
the URL mapping:

"/$controller/$action?/$id?"{

300

Testing Content Negotiation

To test content negotiation in a unit or integration test (see the section on) you can either manipulate the incoming request headers:Testing

void testJavascriptOutput() {
 def controller = TestController()new
 controller.request.addHeader ,"Accept"
 "text/javascript, text/html, application/xml, text/xml, */*"

controller.testAction()
 assertEquals , controller.response.contentAsString"alert('hello')"
}

Or you can set the format parameter to achieve a similar effect:

void testJavascriptOutput() {
 def controller = TestController()new
 controller.params.format = 'js'

controller.testAction()
 assertEquals , controller.response.contentAsString"alert('hello')"
}

301

9 Traits

Overview

Grails provides a number of traits which provide access to properties and behavior that may be accessed from various Grails artefacts as well as arbitrary
Groovy classes which are part of a Grails project. Many of these traits are automatically added to Grails artefact classes (like controllers and taglibs, for
example) and are easy to add to other classes.

9.1 Traits Provided by Grails
Grails artefacts are automatically augmented with certain traits at compile time.

Domain Class Traits

grails.artefact.DomainClass

grails.web.databinding.WebDataBinding

org.grails.datastore.gorm.GormEntity

org.grails.datastore.gorm.GormValidateable

Controller Traits

grails.artefact.gsp.TagLibraryInvoker

grails.artefact.AsyncController

grails.artefact.controller.RestResponder

grails.artefact.Controller

Interceptor Trait

grails.artefact.Interceptor

Tag Library Trait

grails.artefact.TagLibrary

Service Trait

grails.artefact.Service

Below is a list of other traits provided by the framework. The javadocs provide more detail about methods and properties related to each trait.

http://grails.github.io/grails-doc/3.0.x/api/grails/artefact/DomainClass.html
http://grails.github.io/grails-doc/3.0.x/api/grails/web/databinding/WebDataBinding.html
http://grails.github.io/grails-doc/3.0.x/api/grails/artefact/gsp/TagLibraryInvoker.html
http://grails.github.io/grails-doc/3.0.x/api/grails/artefact/AsyncController.html
http://grails.github.io/grails-doc/3.0.x/api/grails/artefact/controller/RestResponder.html
http://grails.github.io/grails-doc/3.0.x/api/grails/artefact/Controller.html
http://grails.github.io/grails-doc/3.0.x/api/grails/artefact/Interceptor.html
http://grails.github.io/grails-doc/3.0.x/api/grails/artefact/TagLibrary.html
http://grails.github.io/grails-doc/3.0.x/api/grails/artefact/Service.html

302

Trait Brief Description

grails.web.api.WebAttributes Common Web Attributes

grails.web.api.ServletAttributes Servlet API Attributes

grails.web.databinding.DataBinder Data Binding API

grails.artefact.controller.support.RequestForwarder Request Forwarding API

grails.artefact.controller.support.ResponseRedirector Response Redirecting API

grails.artefact.controller.support.ResponseRenderer Response Rendering API

grails.validation.Validateable Validation API

9.1.1 WebAttributes Trait Example
 is one of the traits provided by the framework. Any Groovy class may implement this trait to inherit all of the properties and behaviorsWebAttributes

provided by the trait.

// src/main/groovy/demo/Helper.groovy
 demopackage

 grails.web.api.WebAttributesimport

class Helper WebAttributes {implements

List< > getControllerNames() {String
 // There is no need to pass grailsApplication as an argument
 // or otherwise inject the grailsApplication property. The
 // WebAttributes trait provides access to grailsApplication.
 grailsApplication.getArtefacts('Controller')*.name
 }
}

The traits are compatible with static compilation...

http://grails.github.io/grails-doc/3.0.x/api/grails/web/api/WebAttributes.html
http://grails.github.io/grails-doc/3.0.x/api/grails/web/api/ServletAttributes.html
http://grails.github.io/grails-doc/3.0.x/api/grails/web/databinding/DataBinder.html
http://grails.github.io/grails-doc/3.0.x/api/grails/artefact/controller/support/RequestForwarder.html
http://grails.github.io/grails-doc/3.0.x/api/grails/artefact/controller/support/ResponseRedirector.html
http://grails.github.io/grails-doc/3.0.x/api/grails/artefact/controller/support/ResponseRenderer.html
http://grails.github.io/grails-doc/3.0.x/api/grails/validation/Validateable.html
http://grails.github.io/grails-doc/3.0.x/api/grails/web/api/WebAttributes.html

303

// src/main/groovy/demo/Helper.groovy
 demopackage

 grails.web.api.WebAttributesimport
 groovy.transform.CompileStaticimport

@CompileStatic
class Helper WebAttributes {implements

List< > getControllerNames() {String
 // There is no need to pass grailsApplication as an argument
 // or otherwise inject the grailsApplication property. The
 // WebAttributes trait provides access to grailsApplication.
 grailsApplication.getArtefacts('Controller')*.name
 }
}

304

10 Web Services
Web Services are all about providing a web API onto your web application and are typically implemented in either or REST SOAP

10.1 REST
REST is not really a technology in itself, but more an architectural pattern. REST is very simple and just involves using plain XML or JSON as a
communication medium, combined with URL patterns that are "representational" of the underlying system, and HTTP methods such as GET, PUT, POST
and DELETE.

Each HTTP method maps to an action type. For example GET for retrieving data, POST for creating data, PUT for updating and so on.

Grails includes flexible features that make it easy to create RESTful APIs. Creating a RESTful resource can be as simple as one line of code, as
demonstrated in the next section.

10.1.1 Domain classes as REST resources
The easiest way to create a RESTful API in Grails is to expose a domain class as a REST resource. This can be done by adding the

 transformation to any domain class:grails.rest.Resource

import grails. .*rest

@Resource(uri='/books')
class Book {

 titleString

 constraints = {static
 title blank:false
 }
}

Simply by adding the transformation and specifying a URI, your domain class will automatically be available as a REST resource in eitherResource
XML or JSON formats. The transformation will automatically register the necessary and create a controller called RESTful URL mapping

.BookController

You can try it out by adding some test data to :BootStrap.groovy

def init = { servletContext ->

 Book(title:).save()new "The Stand"
 Book(title:).save()new "The Shining"
 }

And then hitting the URL http://localhost:8080/books/1, which will render the response like:

http://en.wikipedia.org/wiki/Representational_State_Transfer
http://en.wikipedia.org/wiki/SOAP.

305

<?xml version= encoding= ?>"1.0" "UTF-8"
<book id= >"1"
 <title>The Stand</title>
</book>

If you change the URL to you will get a JSON response such as:http://localhost:8080/books/1.json

{ :1, : }"id" "title" "The Stand"

If you wish to change the default to return JSON instead of XML, you can do this by setting the attribute of the transformation:formats Resource

import grails. .*rest

@Resource(uri='/books', formats=['json', 'xml'])
class Book {
 …
}

With the above example JSON will be prioritized. The list that is passed should contain the names of the formats that the resource should expose. The
names of formats are defined in the setting of :grails.mime.types application.groovy

grails.mime.types = [
 …
 json: ['application/json', 'text/json'],
 …
 xml: ['text/xml', 'application/xml']
]

See the section on in the user guide for more information.Configuring Mime Types

Instead of using the file extension in the URI, you can also obtain a JSON response using the ACCEPT header. Here's an example using the Unix curl
tool:

306

$ curl -i -H localhost:8080/books/1"Accept: application/json"
{ :1, : }"id" "title" "The Stand"

This works thanks to Grails' features.Content Negotiation

You can create a new resource by issuing a request:POST

$ curl -i -X POST -H -d '{ : }' localhost:8080/books"Content-Type: application/json" "title" "Along Came A Spider"
HTTP/1.1 201 Created
Server: Apache-Coyote/1.1
...

Updating can be done with a request:PUT

$ curl -i -X PUT -H -d '{ : }' localhost:8080/books/1"Content-Type: application/json" "title" "Along Came A Spider"
HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
...

Finally a resource can be deleted with request:DELETE

$ curl -i -X DELETE localhost:8080/books/1
HTTP/1.1 204 No Content
Server: Apache-Coyote/1.1
...

As you can see, the transformation enables all of the HTTP method verbs on the resource. You can enable only read-only capabilities byResource
setting the attribute to true:readOnly

307

import grails. .*rest

@Resource(uri='/books', readOnly=)true
class Book {
 …
}

In this case POST, PUT and DELETE requests will be forbidden.

10.1.2 Mapping to REST resources
If you prefer to keep the declaration of the URL mapping in your file then simply removing the attribute of the UrlMappings.groovy uri

 transformation and adding the following line to will suffice:Resource UrlMappings.groovy

"/books"(resources:)"book"

Extending your API to include more end points then becomes trivial:

"/books"(resources:) {"book"
 (controller: , method:)"/publisher" "publisher" "GET"
}

The above example will expose the URI ./books/1/publisher

A more detailed explanation on can be found in the of the user guide.creating RESTful URL mappings URL Mappings section

10.1.3 Linking to REST resources from GSP pages
The tag offers an easy way to link to any domain class resource:link

<g:link resource= >My Link</g:link>"${book}"

However, currently you cannot use g:link to link to the DELETE action and most browsers do not support sending the DELETE method directly.

308

The best way to accomplish this is to use a form submit:

<form action= method= >"/book/2" "post"
 <input type= name= value= />"hidden" "_method" "DELETE"
 </form>

Grails supports overriding the request method via the hidden _method parameter. This is for browser compatibility purposes. This is useful when using
restful resource mappings to create powerful web interfaces. To make a link fire this type of event, perhaps capture all click events for links with a
`data-method` attribute and issue a form submit via javascript.

10.1.4 Versioning REST resources
A common requirement with a REST API is to expose different versions at the same time. There are a few ways this can be achieved in Grails.

Versioning using the URI

A common approach is to use the URI to version APIs (although this approach is discouraged in favour of Hypermedia). For example, you can define the
following URL mappings:

"/books/v1"(resources: , namespace:'v1')"book"
(resources: , namespace:'v2')"/books/v2" "book"

That will match the following controllers:

package myapp.v1

class BookController {
 namespace = 'v1'static
}

 myapp.v2package

class BookController {
 namespace = 'v2'static
}

This approach has the disadvantage of requiring two different URI namespaces for your API.

Versioning with the Accept-Version header

309

As an alternative Grails supports the passing of an header from clients. For example you can define the following URL mappings:Accept-Version

"/books"(version:'1.0', resources: , namespace:'v1')"book"
(version:'2.0', resources: , namespace:'v2')"/books" "book"

Then in the client simply pass which version you need using the header:Accept-Version

$ curl -i -H -X GET http://localhost:8080/books"Accept-Version: 1.0"

Versioning using Hypermedia / Mime Types

Another approach to versioning is to use Mime Type definitions to declare the version of your custom media types (see the section on "Hypermedia as the
Engine of Application State" for more information about Hypermedia concepts). For example, in you can declare a customapplication.groovy
Mime Type for your resource that includes a version parameter (the 'v' parameter):

grails.mime.types = [
 all: '*/*',
 book: ,"application/vnd.books.org.book+json;v=1.0"
 bookv2: ,"application/vnd.books.org.book+json;v=2.0"
 …
}

It is critical that place your new mime types after the 'all' Mime Type because if the Content Type of the request cannot be
established then the first entry in the map is used for the response. If you have your new Mime Type at the top then Grails
will always try and send back your new Mime Type if the requested Mime Type cannot be established.

Then override the renderer (see the section on "Customizing Response Rendering" for more information on custom renderers) to send back the custom
Mime Type in :grails-app/conf/spring/resourses.groovy

310

import grails. .render.json.*rest
 grails.web.mime.*import

beans = {
 bookRendererV1(JsonRenderer, myapp.v1.Book, MimeType(, [v:]))new "application/vnd.books.org.book+json" "1.0"
 bookRendererV2(JsonRenderer, myapp.v2.Book, MimeType(, [v:]))new "application/vnd.books.org.book+json" "2.0"
}

Then update the list of acceptable response formats in your controller:

class BookController RestfulController {extends
 responseFormats = ['json', 'xml', 'book', 'bookv2']static

// …
}

Then using the header you can specify which version you need using the Mime Type:Accept

$ curl -i -H -X GET http://localhost:8080/books"Accept: application/vnd.books.org.book+json;v=1.0"

10.1.5 Implementing REST controllers
The transformation is a quick way to get started, but typically you'll want to customize the controller logic, the rendering of the response orResource
extend the API to include additional actions.

10.1.5.1 Extending the RestfulController super class
The easiest way to get started doing so is to create a new controller for your resource that extends the supergrails.rest.RestfulController
class. For example:

class BookController RestfulController {extends
 responseFormats = ['json', 'xml']static
 BookController() {
 (Book)super
 }
}

311

To customize any logic you can just override the appropriate action. The following table provides the names of the action names and the URIs they map
to:

HTTP Method URI Controller Action

GET /books index

GET /books/create create

POST /books save

GET /books/${id} show

GET /books/${id}/edit edit

PUT /books/${id} update

DELETE /books/${id} delete

Note that the and actions are only needed if the controller exposes an HTML interface.create edit

As an example, if you have a then you would typically want to query both the parent and the child identifiers. For example, given thenested resource
following URL mapping:

"/authors"(resources:'author') {
 (resources:'book')"/books"
}

You could implement the nested controller as follows:

class BookController RestfulController {extends
 responseFormats = ['json', 'xml']static
 BookController() {
 (Book)super
 }

@Override
 Book queryForResource(Serializable id) {protected
 Book.where {
 id == id && author.id = params.authorId
 }.find()
 }

}

312

The example above subclasses and overrides the protected method to customize the query for theRestfulController queryForResource
resource to take into account the parent resource.

Customizing Data Binding In A RestfulController Subclass

The RestfulController class contains code which does data binding for actions like and . The class defines a save update getObjectToBind()
method which returns a value which will be used as the source for data binding. For example, the update action does something like this...

class RestfulController<T> {

def update() {
 T instance = // retrieve instance from the database...

instance.properties = getObjectToBind()

// …
 }

// …
}

By default the method returns the object. When the object is used as the binding source, if the request has agetObjectToBind() request request
body then the body will be parsed and its contents will be used to do the data binding, otherwise the request parameters will be used to do the data
binding. Subclasses of RestfulController may override the method and return anything that is a valid binding source, including agetObjectToBind()

 or a . For most use cases binding the request is appropriate but the method allows for changing thatMap DataBindingSource getObjectToBind()
behavior where desired.

Using custom subclass of RestfulController with Resource annotation

You can also customize the behaviour of the controller that backs the Resource annotation.

The class must provide a constructor that takes a domain class as it's argument. The second constructor is required for supporting Resource annotation
with readOnly=true.

This is a template that can be used for subclassed RestfulController classes used in Resource annotations:

class SubclassRestfulController<T> RestfulController<T> {extends
 SubclassRestfulController(<T> domainClass) {Class
 (domainClass,)this false
 }

SubclassRestfulController(<T> domainClass, readOnly) {Class boolean
 (domainClass, readOnly)super
 }
}

You can specify the super class of the controller that backs the Resource annotation with the attribute.superClass

http://docs.oracle.com/javase/6/docs/api/java/util/Map.html
http://grails.github.io/grails-doc/3.0.x/api/org/grails/databinding/DataBindingSource.html

313

import grails. .*rest

@Resource(uri='/books', superClass=SubclassRestfulController)
class Book {

 titleString

 constraints = {static
 title blank:false
 }
}

10.1.5.2 Implementing REST Controllers Step by Step
If you don't want to take advantage of the features provided by the super class, then you can implement each HTTP verbRestfulController
yourself manually. The first step is to create a controller:

$ grails create-controller book

Then add some useful imports and enable readOnly by default:

import grails.transaction.*
 org.springframework.http.HttpStatus.*import static
 org.springframework.http.HttpMethod.*import static

@Transactional(readOnly =)true
class BookController {
 …
}

Recall that each HTTP verb matches a particular Grails action according to the following conventions:

314

HTTP Method URI Controller Action

GET /books index

GET /books/${id} show

GET /books/create create

GET /books/${id}/edit edit

POST /books save

PUT /books/${id} update

DELETE /books/${id} delete

The 'create' and 'edit' actions are already required if you plan to implement an HTML interface for the REST resource.
They are there in order to render appropriate HTML forms to create and edit a resource. If this is not a requirement they
can be discarded.

The key to implementing REST actions is the method introduced in Grails 2.3. The method tries to produce the most appropriaterespond respond
response for the requested content type (JSON, XML, HTML etc.)

Implementing the 'index' action

For example, to implement the action, simply call the method passing the list of objects to respond with:index respond

def index(max) {Integer
 params.max = .min(max ?: 10, 100)Math
 respond Book.list(params), model:[bookCount: Book.count()]
}

Note that in the above example we also use the argument of the method to supply the total count. This is only required if you plan tomodel respond
support pagination via some user interface.

The method will, using , attempt to reply with the most appropriate response given the content type requested by the clientrespond Content Negotiation
(via the ACCEPT header or file extension).

If the content type is established to be HTML then a model will be produced such that the action above would be the equivalent of writing:

def index(max) {Integer
 params.max = .min(max ?: 10, 100)Math
 [bookList: Book.list(params), bookCount: Book.count()]
}

315

By providing an file you can render an appropriate view for the given model. If the content type is something other than HTML then the index.gsp
 method will attempt to lookup an appropriate instance that is capable of rendering the passed object.respond grails.rest.render.Renderer

This is done by inspecting the .grails.rest.render.RendererRegistry

By default there are already renderers configured for JSON and XML, to find out how to register a custom renderer see the section on "Customizing
Response Rendering".

Implementing the 'show' action

The action, which is used to display and individual resource by id, can be implemented in one line of Groovy code (excluding the methodshow
signature):

def show(Book book) {
 respond book
}

By specifying the domain instance as a parameter to the action Grails will automatically attempt to lookup the domain instance using the parameter ofid
the request. If the domain instance doesn't exist, then will be passed into the action. The method will return a 404 error if null is passednull respond
otherwise once again it will attempt to render an appropriate response. If the format is HTML then an appropriate model will produced. The following
action is functionally equivalent to the above action:

def show(Book book) {
 (book ==) {if null
 render status:404
 }
 {else
 [book: book]return
 }
}

Implementing the 'save' action

The action creates new resource representations. To start off, simply define an action that accepts a resource as the first argument and mark it as save
 with the transform:Transactional grails.transaction.Transactional

@Transactional
def save(Book book) {
 …
}

316

Then the first thing to do is check whether the resource has any and if so respond with the errors:validation errors

if(book.hasErrors()) {
 respond book.errors, view:'create'
}

 {else
 …
}

In the case of HTML the 'create' view will be rendered again so the user can correct the invalid input. In the case of other formats (JSON, XML etc.), the
errors object itself will be rendered in the appropriate format and a status code of 422 (UNPROCESSABLE_ENTITY) returned.

If there are no errors then the resource can be saved and an appropriate response sent:

book.save flush:true
 withFormat {
 html {
 flash.message = message(code: ' .created.message', args: [message(code: 'book.label', :default default
'Book'), book.id])
 redirect book
 }
 '*' { render status: CREATED }
 }

In the case of HTML a redirect is issued to the originating resource and for other formats a status code of 201 (CREATED) is returned.

Implementing the 'update' action

The action updates an existing resource representations and is largely similar to the action. First define the method signature:update save

@Transactional
def update(Book book) {
 …
}

If the resource exists then Grails will load the resource, otherwise null we passed. In the case of null, you should return a 404:

317

if(book ==) {null
 render status: NOT_FOUND
 }
 {else
 …
 }

Then once again check for errors and if so respond with the errors:validation errors

if(book.hasErrors()) {
 respond book.errors, view:'edit'
}

 {else
 …
}

In the case of HTML the 'edit' view will be rendered again so the user can correct the invalid input. In the case of other formats (JSON, XML etc.) the
errors object itself will be rendered in the appropriate format and a status code of 422 (UNPROCESSABLE_ENTITY) returned.

If there are no errors then the resource can be saved and an appropriate response sent:

book.save flush:true
withFormat {
 html {
 flash.message = message(code: ' .updated.message', args: [message(code: 'book.label', :default default
'Book'), book.id])
 redirect book
 }
 '*' { render status: OK }
}

In the case of HTML a redirect is issued to the originating resource and for other formats a status code of 200 (OK) is returned.

Implementing the 'delete' action

The action deletes an existing resource. The implementation is largely similar to the action, expect the method is calleddelete update delete()
instead:

318

book.delete flush:true
withFormat {
 html {
 flash.message = message(code: ' .deleted.message', args: [message(code: 'Book.label', :default default
'Book'), book.id])
 redirect action: , method: "index" "GET"
 }
 '*'{ render status: NO_CONTENT }
}

Notice that for an HTML response a redirect is issued back to the action, whilst for other content types a response code 204 (NO_CONTENT) isindex
returned.

10.1.5.3 Generating a REST controller using scaffolding
To see some of these concepts in action and help you get going the , version 2.0 and above, can generate a REST ready controller forScaffolding plugin
you, simply run the command:

$ grails generate-controller [Domain Name]Class

10.1.6 The REST Profile
Since Grails 3.1, Grails supports a tailored profile for creating REST applications that provides a more focused set of dependencies and commands.

To get started with the REST profile create an application with by specifying as the name of the profile:rest-api

$ grails create-app my-api --profile -apirest

This will create a new REST application that provides the following features:

Default set of commands for creating and generating REST endpoints

Defaults to using JSON views for rendering responses (see the next section)

Few plugins than the default Grails plugin (no GSP, no Asset Pipeline, Nothing HTML related)

You will notice for example in the directory that there are files for rendering the default index page and as well as anygrails-app/views *.gson
404 and 500 errors.

If you issue the following set of commands:

http://grails.org/plugin/scaffolding

319

$ grails create-domain-class book
$ grails generate-all my.api.Book

Instead of CRUD HTML interface a REST endpoint is generated that produces JSON responses. In addition, the generated functional and unit tests by
default test the REST endpoint.

10.1.7 The Angular Profile
Since Grails 3.1, Grails supports a profile for creating applications with AngularJS that provides a more focused set of dependencies and commands. The
angular profile inherits from the REST profile and therefore has all of the commands and properties that the REST profile has.

To get started with the Angular profile create an application with by specifying as the name of the profile:angular

$ grails create-app my-api --profile angular

This will create a new Grails application that provides the following features:

Default set of commands for creating Angular artefacts

Gradle plugin to manage client side dependencies

Gradle plugin to execute client side unit tests

Asset Pipeline plugins to ease development

By default the Angular profile includes GSP support in order to render the index page. This is necessary because the profile is designed around asset
pipeline.

The new commands are:

create-ng-component

create-ng-controller

create-ng-directive

create-ng-domain

create-ng-module

create-ng-service

Project structure

320

The Angular profile is designed around a specific project structure. The commands will automatically create modules where they do notcreate-ng
exist.

Example:

$ grails create-ng-controller foo

This will produce a file in .fooController.js grails-app/assets/javascripts/${default package name}/controllers

By default the angular profile will create files in the directory. You can change that behavior in yourjavascripts
configuration with the key .grails.codegen.angular.assetDir

$ grails create-ng-domain foo.bar

This will produce a file in . It will also create the "foo" module if it does notBar.js grails-app/assets/javascripts/foo/domains
already exist.

$ grails create-ng-module foo.bar

This will produce a file in . Note the naming convention for modules is differentfoo.bar.js grails-app/assets/javascripts/foo/bar
than other artefacts.

$ grails create-ng-service foo.bar --type constant

This will produce a file in . It will also create the "foo" module if it does notbar.js grails-app/assets/javascripts/foo/services
already exist. The command accepts a flag . The types that can be used are:create-ng-service -type

321

service

factory default

value

provider

constant

Along with the artefacts themselves, the profile will also produce a skeleton unit test file under for each create commandsrc/test/javascripts

Client side dependencies

The is used to manage dependencies with bower. Visit the plugin documentation to learn how to use the plugin.Gradle Bower Plugin

Unit Testing

The is used to execute client side unit tests. All generated tests are written with Jasmine. Visit the plugin documentation to learnGradle Karma Plugin
how to use the plugin.

Asset Pipeline

The Angular profile includes several asset pipeline plugins to make development easier.

JS Closure Wrap Asset Pipeline will wrap your Angular code in immediately invoked function expressions.

Annotate Asset Pipeline will annotate your dependencies to be safe for minification.

Template Asset Pipeline will put your templates into the to prevent http requests to retrieve the templates.$templateCache

10.1.8 JSON Views
As mentioned in the previous section the REST profile by default uses JSON views to render JSON responses. These play a similar role to GSP, but
instead are optimized for outputing JSON responses instead of HTML.

You can continue to separate your application in terms of MVC, with the logic of your application residing in controllers and services, whilst view related
matters are handled by JSON views.

JSON views also provide the flexibility to easily customize the JSON presented to clients without having to resort to relatively complex marshalling
libraries like Jackson or Grails' marshaller API.

Since Grails 3.1, JSON views are considered by the Grails team the best way to present JSON output for the client, and for
that reason the section on writing custom marshallers has been removed from the user guide. If you are looking for
information on that topic, see .the Grails 3.0.x guide

10.1.8.1 Getting Started
If you are using the REST or AngularJS profiles then the JSON views plugin will already be included and you can skip the remainder of this section.
Otherwise you will need to modify your to include the necessary plugin to activate JSON views:build.gradle

https://github.com/craigburke/bower-installer-gradle/
https://github.com/craigburke/karma-gradle
https://github.com/craigburke/js-closure-wrap-asset-pipeline
https://github.com/craigburke/angular-annotate-asset-pipeline
https://github.com/craigburke/angular-template-asset-pipeline
http://grails.github.io/grails-doc/3.0.x/guide/webServices.html#objectMarshallers

322

compile 'org.grails.plugins:views-json:1.0.0' // or whatever is the latest version

Tip: The can be found on Github if you are looking for more documentation andsource code repository for JSON views
contributions

In order to compile JSON views for production deployment you should also activate the Gradle plugin by first modifying the block:buildscript

buildscript {
 …
 dependencies {
 …
 classpath "org.grails.plugins:views-gradle:1.0.0"
 }
}

Then apply the Gradle plugin after any Grails core gradle plugins:org.grails.plugins.views-json

…
apply plugin: "org.grails.grails-web"
apply plugin: "org.grails.plugins.views-json"

This will add a task to Gradle, which is invoked prior to creating the production JAR or WAR file.compileGsonViews

10.1.8.2 Creating JSON Views
JSON views go into the directory and end with the suffix. They are regular Groovy scripts and can be opened in anygrails-app/views .gson
Groovy editor.

Example JSON view:

https://github.com/grails/grails-views

323

json.person {
 name "bob"
}

Tip: To open them in the Groovy editor in Intellij double click on the file and when asked which file to associate it with
choose "Groovy"

The above JSON view produces:

{ :{ : }}"person" "name" "bob"

There is an implicit variable which is an instance of .json StreamingJsonBuilder

Example usages:

json(1,2,3) == "[1,2,3]"
json { name } == '{ : }'"Bob" "name" "Bob"
json([1,2,3]) { n it } == '[{ :1},{ :2},{ :3}]'"n" "n" "n"

Refer to the API documentation on for more information about what is possible.StreamingJsonBuilder

10.1.8.3 JSON View Templates
You can define templates starting with underscore . For example given the following template called :_ _person.gson

model {
 Person person
}
json {
 name person.name
 age person.age
}

http://docs.groovy-lang.org/latest/html/api/groovy/json/StreamingJsonBuilder.html
http://docs.groovy-lang.org/latest/html/api/groovy/json/StreamingJsonBuilder.html

324

You can render it with a view as follows:

model {
 Family family
}
json {
 name family.father.name
 age family.father.age
 oldestChild g.render(template: , model:[person: family.children.max { Person p -> p.age }])"person"
 children g.render(template: , collection: family.children, :'person')"person" var
}

Alternatively for a more concise way to invoke templates, using the tmpl variable:

model {
 Family family
}
json {
 name family.father.name
 age family.father.age
 oldestChild tmpl.person(family.children.max { Person p -> p.age }])
 children tmpl.person(family.children)
}

10.1.8.4 Rendering Domain Classes with JSON Views
Typically your model may involve one or many domain instances. JSON views provide a render method for rendering these.

For example given the following domain class:

class Book {
 titleString
}

And the following template:

325

model {
 Book book
}

json g.render(book)

The resulting output is:

{id:1, : }"title" "The Stand"

You can customize the rendering by including or excluding properties:

json g.render(book, [includes:['title']])

Or by providing a closure to add additional JSON output:

json g.render(book) {
 pages 1000
}

10.1.8.5 JSON Views by Convention
There are a few useful conventions you can follow when creating JSON views. For example if you have a domain class called , then creating aBook
template located at and using the method will result in rendering the template:grails-app/views/book/_book.gson respond

def show(id) {Long
 respond Book.get(id)
}

326

In addition if an error occurs during validation by default Grails will try to render a template called ,grails-app/views/book/_errors.gson
otherwise it will try ty render if the former doesn't exist.grails-app/views/errors/_errors.gson

This is useful because when persisting objects you can with validation errors to render these aforementioned templates:respond

@Transactional
def save(Book book) {
 (book.hasErrors()) {if
 transactionStatus.setRollbackOnly()
 respond book.errors
 }
 {else
 // valid object
 }
}

If a validation error occurs in the above example the template will be rendered.grails-app/views/book/_errors.gson

For more information on JSON views (and Markup views), see the .README and documentation included with the Github project

10.1.9 Customizing Response Rendering
If you are looking for a more low-level API and JSON or Markup views don't suite your needs then you may want to consider implementing a custom
renderer.

10.1.9.1 Customizing the Default Renderers
The default renderers for XML and JSON can be found in the and packagesgrails.rest.render.xml grails.rest.render.json
respectively. These use the Grails converters (and) by default for response rendering.grails.converters.XML grails.converters.JSON

You can easily customize response rendering using these default renderers. A common change you may want to make is to include or exclude certain
properties from rendering.

Including or Excluding Properties from Rendering

As mentioned previously, Grails maintains a registry of instances. There are some default configured renderersgrails.rest.render.Renderer
and the ability to register or override renderers for a given domain class or even for a collection of domain classes. To include a particular property from
rendering you need to register a custom renderer by defining a bean in :grails-app/conf/spring/resources.groovy

import grails. .render.xml.*rest

beans = {
 bookRenderer(XmlRenderer, Book) {
 includes = ['title']
 }
}

https://github.com/grails/grails-views

327

The bean name is not important (Grails will scan the application context for all registered renderer beans), but for
organizational and readability purposes it is recommended you name it something meaningful.

To exclude a property, the property of the class can be used:excludes XmlRenderer

import grails. .render.xml.*rest

beans = {
 bookRenderer(XmlRenderer, Book) {
 excludes = ['isbn']
 }
}

Customizing the Converters

As mentioned previously, the default renders use the package under the covers. In other words, under the covers they essentiallygrails.converters
do the following:

import grails.converters.*

…
render book as XML

// or render book as JSON

Why the separation between converters and renderers? Well a renderer has more flexibility to use whatever rendering technology you chose. When
implementing a custom renderer you could use , or any Java library to implement the renderer. Converters on the other hand are very muchJackson Gson
tied to Grails' own marshalling implementation.

10.1.9.2 Implementing a Custom Renderer
If you want even more control of the rendering or prefer to use your own marshalling techniques then you can implement your own instance.Renderer
For example below is a simple implementation that customizes the rendering of the class:Book

http://wiki.fasterxml.com/JacksonHome
http://code.google.com/p/google-gson/

328

package myapp
 grails. .render.*import rest
 grails.web.mime.MimeTypeimport

class BookXmlRenderer AbstractRenderer<Book> {extends
 BookXmlRenderer() {
 (Book, [MimeType.XML,MimeType.TEXT_XML] as MimeType[])super
 }

void render(Book object, RenderContext context) {
 context.contentType = MimeType.XML.name

def xml = groovy.xml.MarkupBuilder(context.writer)new
 xml.book(id: object.id, title:object.title)
 }
}

The super class has a constructor that takes the class that it renders and the (s) that are accepted (via the ACCEPTAbstractRenderer MimeType
header or file extension) for the renderer.

To configure this renderer, simply add it is a bean to :grails-app/conf/spring/resources.groovy

beans = {
 bookRenderer(myapp.BookXmlRenderer)
}

The result will be that all instances will be rendered in the following format:Book

<book id= title= />"1" "The Stand"

Note that if you change the rendering to a completely different format like the above, then you also need to change the
binding if you plan to support POST and PUT requests. Grails will not automatically know how to bind data from a custom
XML format to a domain class otherwise. See the section on "Customizing Binding of Resources" for further information.

Container Renderers

A is a renderer that renders responses for containers of objects (lists, maps, collections etc.). Thegrails.rest.render.ContainerRenderer
interface is largely the same as the interface except for the addition of the method, which should return theRenderer getComponentType()
"contained" type. For example:

329

class BookListRenderer ContainerRenderer<List, Book> {implements
 <List> getTargetType() { List }Class
 <Book> getComponentType() { Book }Class
 MimeType[] getMimeTypes() { [MimeType.XML] as MimeType[] }
 void render(List object, RenderContext context) {

 }
}

10.1.9.3 Using GSP to Customize Rendering
You can also customize rendering on a per action basis using Groovy Server Pages (GSP). For example given the action mentioned previously:show

def show(Book book) {
 respond book
}

You could supply a file to customize the rendering of the XML:show.xml.gsp

<%@page contentType= %>"application/xml"
<book id= title= />"${book.id}" "${book.title}"

10.1.10 Hypermedia as the Engine of Application State
, an abbreviation for Hypermedia as the Engine of Application State, is a common pattern applied to REST architectures that uses hypermediaHATEOAS

and linking to define the REST API.

Hypermedia (also called Mime or Media Types) are used to describe the state of a REST resource, and links tell clients how to transition to the next state.
The format of the response is typically JSON or XML, although standard formats such as and/or are frequently used.Atom HAL

10.1.10.1 HAL Support
 is a standard exchange format commonly used when developing REST APIs that follow HATEOAS principals. An example HAL documentHAL

representing a list of orders can be seen below:

http://en.wikipedia.org/wiki/HATEOAS
http://tools.ietf.org/html/rfc4287
http://stateless.co/hal_specification.html
http://stateless.co/hal_specification.html

330

{
 : {"_links"
 : { : },"self" "href" "/orders"
 : { : },"next" "href" "/orders?page=2"
 : {"find"
 : ,"href" "/orders{?id}"
 : "templated" true
 },
 : [{"admin"
 : ,"href" "/admins/2"
 : "title" "Fred"
 }, {
 : ,"href" "/admins/5"
 : "title" "Kate"
 }]
 },
 : 14,"currentlyProcessing"
 : 20,"shippedToday"
 : {"_embedded"
 : [{"order"
 : {"_links"
 : { : },"self" "href" "/orders/123"
 : { : },"basket" "href" "/baskets/98712"
 : { : }"customer" "href" "/customers/7809"
 },
 : 30.00,"total"
 : ,"currency" "USD"
 : "status" "shipped"
 }, {
 : {"_links"
 : { : },"self" "href" "/orders/124"
 : { : },"basket" "href" "/baskets/97213"
 : { : }"customer" "href" "/customers/12369"
 },
 : 20.00,"total"
 : ,"currency" "USD"
 : "status" "processing"
 }]
 }
}

Exposing Resources Using HAL

To return HAL instead of regular JSON for a resource you can simply override the renderer in grails-app/conf/spring/resources.groovy
with an instance of (or for the XML variation):grails.rest.render.hal.HalJsonRenderer HalXmlRenderer

import grails. .render.hal.*rest
beans = {
 halBookRenderer(HalJsonRenderer, .test.Book)rest
}

With the bean in place requesting the HAL content type will return HAL:

331

$ curl -i -H http://localhost:8080/books/1"Accept: application/hal+json"

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: application/hal+json;charset=ISO-8859-1

{
 : {"_links"
 : {"self"
 : ,"href" "http://localhost:8080/books/1"
 : ,"hreflang" "en"
 : "type" "application/hal+json"
 }
 },
 : "title" ""The Stand""
}

To use HAL XML format simply change the renderer:

import grails. .render.hal.*rest
beans = {
 halBookRenderer(HalXmlRenderer, .test.Book)rest
}

Rendering Collections Using HAL

To return HAL instead of regular JSON for a list of resources you can simply override the renderer in
 with an instance of :grails-app/conf/spring/resources.groovy grails.rest.render.hal.HalJsonCollectionRenderer

import grails. .render.hal.*rest
beans = {
 halBookCollectionRenderer(HalJsonCollectionRenderer, .test.Book)rest
}

With the bean in place requesting the HAL content type will return HAL:

332

$ curl -i -H http://localhost:8080/books"Accept: application/hal+json"
HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: application/hal+json;charset=UTF-8
Transfer-Encoding: chunked
Date: Thu, 17 Oct 2013 02:34:14 GMT

{
 : {"_links"
 : {"self"
 : ,"href" "http://localhost:8080/books"
 : ,"hreflang" "en"
 : "type" "application/hal+json"
 }
 },
 : {"_embedded"
 : ["book"
 {
 : {"_links"
 : {"self"
 : ,"href" "http://localhost:8080/books/1"
 : ,"hreflang" "en"
 : "type" "application/hal+json"
 }
 },
 : "title" "The Stand"
 },
 {
 : {"_links"
 : {"self"
 : ,"href" "http://localhost:8080/books/2"
 : ,"hreflang" "en"
 : "type" "application/hal+json"
 }
 },
 : "title" "Infinite Jest"
 },
 {
 : {"_links"
 : {"self"
 : ,"href" "http://localhost:8080/books/3"
 : ,"hreflang" "en"
 : "type" "application/hal+json"
 }
 },
 : "title" "Walden"
 }
]
 }
}

Notice that the key associated with the list of objects in the rendered JSON is which is derived from the type of objects in the collection,Book book
namely . In order to customize the value of this key assign a value to the property on the Book collectionName HalJsonCollectionRenderer
bean as shown below:

333

import grails. .render.hal.*rest
beans = {
 halBookCollectionRenderer(HalCollectionJsonRenderer, .test.Book) {rest
 collectionName = 'publications'
 }
}

With that in place the rendered HAL will look like the following:

334

$ curl -i -H http://localhost:8080/books"Accept: application/hal+json"
HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: application/hal+json;charset=UTF-8
Transfer-Encoding: chunked
Date: Thu, 17 Oct 2013 02:34:14 GMT

{
 : {"_links"
 : {"self"
 : ,"href" "http://localhost:8080/books"
 : ,"hreflang" "en"
 : "type" "application/hal+json"
 }
 },
 : {"_embedded"
 : ["publications"
 {
 : {"_links"
 : {"self"
 : ,"href" "http://localhost:8080/books/1"
 : ,"hreflang" "en"
 : "type" "application/hal+json"
 }
 },
 : "title" "The Stand"
 },
 {
 : {"_links"
 : {"self"
 : ,"href" "http://localhost:8080/books/2"
 : ,"hreflang" "en"
 : "type" "application/hal+json"
 }
 },
 : "title" "Infinite Jest"
 },
 {
 : {"_links"
 : {"self"
 : ,"href" "http://localhost:8080/books/3"
 : ,"hreflang" "en"
 : "type" "application/hal+json"
 }
 },
 : "title" "Walden"
 }
]
 }
}

Using Custom Media / Mime Types

If you wish to use a custom Mime Type then you first need to declare the Mime Types in :grails-app/conf/application.groovy

335

grails.mime.types = [
 all: ,"*/*"
 book: ,"application/vnd.books.org.book+json"
 bookList: ,"application/vnd.books.org.booklist+json"
 …
]

It is critical that place your new mime types after the 'all' Mime Type because if the Content Type of the request cannot be
established then the first entry in the map is used for the response. If you have your new Mime Type at the top then Grails
will always try and send back your new Mime Type if the requested Mime Type cannot be established.

Then override the renderer to return HAL using the custom Mime Types:

import grails. .render.hal.*rest
 grails.web.mime.*import

beans = {
 halBookRenderer(HalJsonRenderer, .test.Book, MimeType(, [v:]))rest new "application/vnd.books.org.book+json" "1.0"
 halBookListRenderer(HalJsonCollectionRenderer, .test.Book, MimeType(rest new

, [v:]))"application/vnd.books.org.booklist+json" "1.0"
}

In the above example the first bean defines a HAL renderer for a single book instance that returns a Mime Type of
. The second bean defines the Mime Type used to render a collection of books (in this case application/vnd.books.org.book+json

).application/vnd.books.org.booklist+json

 is an example of a media-rangeapplication/vnd.books.org.booklist+json
(http://www.w3.org/Protocols/rfc2616/rfc2616.html - Header Field Definitions). This example uses entity (book) and
operation (list) to form the media-range values but in reality, it may not be necessary to create a separate Mime type for
each operation. Further, it may not be necessary to create Mime types at the entity level. See the section on "Versioning
REST resources" for further information about how to define your own Mime types.

With this in place issuing a request for the new Mime Type returns the necessary HAL:

336

$ curl -i -H http://localhost:8080/books/1"Accept: application/vnd.books.org.book+json"

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: application/vnd.books.org.book+json;charset=ISO-8859-1

{
 : {"_links"
 : {"self"
 : ,"href" "http://localhost:8080/books/1"
 : ,"hreflang" "en"
 : "type" "application/vnd.books.org.book+json"
 }
 },
 : "title" ""The Stand""
}

Customizing Link Rendering

An important aspect of HATEOAS is the usage of links that describe the transitions the client can use to interact with the REST API. By default the
 will automatically create links for you for associations and to the resource itself (using the "self" relationship).HalJsonRenderer

However you can customize link rendering using the method that is added to all domain classes annotated with orlink grails.rest.Resource
any class annotated with . For example, the action can be modified as follows to provide a new link in the resultinggrails.rest.Linkable show
output:

def show(Book book) {
 book.link rel:'publisher', href: g.createLink(absolute: , resource: , params:[bookId: book.id])true "publisher"
 respond book
}

Which will result in output such as:

337

{
 : {"_links"
 : {"self"
 : ,"href" "http://localhost:8080/books/1"
 : ,"hreflang" "en"
 : "type" "application/vnd.books.org.book+json"
 }
 : {"publisher"
 : ,"href" "http://localhost:8080/books/1/publisher"
 : "hreflang" "en"
 }
 },
 : "title" ""The Stand""
}

The method can be passed named arguments that match the properties of the class.link grails.rest.Link

10.1.10.2 Atom Support
 is another standard interchange format used to implement REST APIs. An example of Atom output can be seen below:Atom

<?xml version= encoding= ?>"1.0" "utf-8"
<feed xmlns= >"http://www.w3.org/2005/Atom"

Example Feed<title> </title>
 <link href= />"http://example.org/"
 2003-12-13T18:30:02Z<updated> </updated>
 <author>
 John Doe<name> </name>
 </author>
 urn:uuid:60a76c80-d399-11d9-b93C-0003939e0af6<id> </id>

<entry>
 Atom-Powered Robots Run Amok<title> </title>
 <link href= />"http://example.org/2003/12/13/atom03"
 urn:uuid:1225c695-cfb8-4ebb-aaaa-80da344efa6a<id> </id>
 2003-12-13T18:30:02Z<updated> </updated>
 Some text.<summary> </summary>
 </entry>

</feed>

To use Atom rendering again simply define a custom renderer:

http://tools.ietf.org/html/rfc4287

338

import grails. .render.atom.*rest
beans = {
 halBookRenderer(AtomRenderer, .test.Book)rest
 halBookListRenderer(AtomCollectionRenderer, .test.Book)rest
}

10.1.10.3 Vnd.Error Support
 is a standardised way of expressing an error response.Vnd.Error

By default when a validation error occurs when attempting to POST new resources then the errors object will be sent back allow with a 422 respond code:

$ curl -i -H -H -X POST -d "Accept: application/json" "Content-Type: application/json" ""
http://localhost:8080/books

HTTP/1.1 422 Unprocessable Entity
Server: Apache-Coyote/1.1
Content-Type: application/json;charset=ISO-8859-1

{ :[{ : , : , : , :"errors" "object" " .test.Book"rest "field" "title" "rejected-value" null "message" "Property [title] of class
}]}[class .test.Book] cannot be "rest null

If you wish to change the format to Vnd.Error then simply register bean in grails.rest.render.errors.VndErrorJsonRenderer
:grails-app/conf/spring/resources.groovy

beans = {
 vndJsonErrorRenderer(grails. .render.errors.VndErrorJsonRenderer)rest
 // Vnd.Error XML formatfor
 vndXmlErrorRenderer(grails. .render.errors.VndErrorXmlRenderer)rest
}

Then if you alter the client request to accept Vnd.Error you get an appropriate response:

https://github.com/blongden/vnd.error

339

$ curl -i -H -H -X POST -d "Accept: application/vnd.error+json,application/json" "Content-Type: application/json" ""
http://localhost:8080/books
HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: application/vnd.error+json;charset=ISO-8859-1

[
 {
 : ,"logref" ""book.nullable""
 : ,"message" "Property [title] of class [class .test.Book] cannot be "rest null
 : {"_links"
 : {"resource"
 : "href" "http://localhost:8080/ -test/books"rest
 }
 }
 }
]

10.1.11 Customizing Binding of Resources
The framework provides a sophisticated but simple mechanism for binding REST requests to domain objects and command objects. One way to take
advantage of this is to bind the property in a controller the of a domain class. Given the following XML as the body of therequest properties
request, the action will create a new and assign "The Stand" to the property and "Stephen King" to the createBook Book title authorName
property.

<?xml version= encoding= ?>"1.0" "UTF-8"
<book>
 <title>The Stand</title>
 <authorName>Stephen King</authorName>
</book>

class BookController {

def createBook() {
 def book = Book()new
 book.properties = request

// …
 }
}

Command objects will automatically be bound with the body of the request:

340

class BookController {
 def createBook(BookCommand book) {

// …
 }
}

class BookCommand {
 titleString
 authorNameString
}

If the command object type is a domain class and the root element of the XML document contains an attribute, the value will be used to retrieveid id
the corresponding persistent instance from the database and then the rest of the document will be bound to the instance. If no corresponding record is
found in the database, the command object reference will be null.

<?xml version= encoding= ?>"1.0" "UTF-8"
<book id= >"42"
 <title>Walden</title>
 <authorName>Henry David Thoreau</authorName>
</book>

class BookController {
 def updateBook(Book book) {
 // The book will have been retrieved from the database and updated
 // by doing something like :this
 //
 // book == Book.get('42')
 // (book !=) {if null
 // book.properties = request
 // }
 //
 // the code above represents what the framework will
 // have done. There is no need to write that code.

// ...

}
}

The data binding depends on an instance of the interface created by an instance of the interface. TheDataBindingSource DataBindingSourceCreator
specific implementation of will be selected based on the of the request. Several implementations areDataBindingSourceCreator contentType
provided to handle common content types. The default implementations will be fine for most use cases. The following table lists the content types which
are supported by the core framework and which implementations are used for each. All of the implementation classesDataBindingSourceCreator
are in the package.org.grails.databinding.bindingsource

http://grails.github.io/grails-doc/3.0.x/api/org/grails/databinding/DataBindingSource.html
http://grails.github.io/grails-doc/3.0.x/api/org/grails/databinding/bindingsource/DataBindingSourceCreator.html

341

Content Type(s) Bean Name DataBindingSourceCreator Impl.

application/xml, text/xml xmlDataBindingSourceCreator XmlDataBindingSourceCreator

application/json, text/json jsonDataBindingSourceCreator JsonDataBindingSourceCreator

application/hal+json halJsonDataBindingSourceCreator HalJsonDataBindingSourceCreator

application/hal+xml halXmlDataBindingSourceCreator HalXmlDataBindingSourceCreator

In order to provide your own for any of those content types, write a class which implements DataBindingSourceCreator
 and register an instance of that class in the Spring application context. If you are replacing one of the existing helpers,DataBindingSourceCreator

use the corresponding bean name from above. If you are providing a helper for a content type other than those accounted for by the core framework, the
bean name may be anything that you like but you should take care not to conflict with one of the bean names above.

The interface defines just 2 methods:DataBindingSourceCreator

package org.grails.databinding.bindingsource

 grails.web.mime.MimeTypeimport
 grails.databinding.DataBindingSourceimport

/**
 * A factory DataBindingSource instancesfor
 *
 * @since 2.3
 * @see DataBindingSourceRegistry
 * @see DataBindingSource
 *
 */

 DataBindingSourceCreator {interface

/**
 * link MimeType} supported by helper All of the {return this
 */
 MimeType[] getMimeTypes()

/**
 * Creates a DataBindingSource suitable binding bindingSource to bindingTargetfor
 *
 * @param mimeType a mime type
 * @param bindingTarget the target of the data binding
 * @param bindingSource the value being bound
 * @ a DataBindingSourcereturn
 */
 DataBindingSource createDataBindingSource(MimeType mimeType, bindingTarget, bindingSource)Object Object
}

 is an abstract class designed to be extended to simplify writing custom AbstractRequestBodyDataBindingSourceCreator
 classes. Classes which extend need to implement aDataBindingSourceCreator AbstractRequestbodyDatabindingSourceCreator

method named which accepts an as an argument and returns a as well ascreateBindingSource InputStream DataBindingSource
implementing the method described in the interface above. The argument to getMimeTypes DataBindingSourceCreator InputStream

 provides access to the body of the request.createBindingSource

The code below shows a simple implementation.

http://grails.github.io/grails-doc/3.0.x/api/org/grails/databinding/bindingsource/AbstractRequestbodyDataBindingSourceCreator.html

342

// MyCustomDataBindingSourceCreator.groovy in
// src/groovy/com/demo/myapp/databinding

 com.demo.myapp.databindingpackage

 grails.web.mime.MimeTypeimport
 grails.databinding.DataBindingSourceimport
 org...databinding.SimpleMapDataBindingSourceimport
 org...databinding.bindingsource.AbstractRequestBodyDataBindingSourceCreatorimport

/**
 * A custom DataBindingSourceCreator capable of parsing key value pairs out of
 * a request body containing a comma separated list of key:value pairs like:
 *
 * name:Herman,age:99,town:STL
 *
 */
class MyCustomDataBindingSourceCreator AbstractRequestBodyDataBindingSourceCreator {extends

@Override
 MimeType[] getMimeTypes() {public
 [MimeType('text/custom+demo+csv')] as MimeType[]new
 }

@Override
 DataBindingSource createBindingSource(InputStream inputStream) {protected
 def map = [:]

def reader = InputStreamReader(inputStream)new

// is an obviously naive parser and is intendedthis
 // demonstration purposes only.for

reader.eachLine { line ->
 def keyValuePairs = line.split(',')
 keyValuePairs.each { keyValuePair ->
 (keyValuePair?.trim()) {if
 def keyValuePieces = keyValuePair.split(':')
 def key = keyValuePieces[0].trim()
 def value = keyValuePieces[1].trim()
 map[key] = value
 }
 }
 }

// create and a DataBindingSource which contains the parsed datareturn
 SimpleMapDataBindingSource(map)new
 }
}

An instance of needs to be registered in the spring application context.MyCustomDataSourceCreator

// grails-app/conf/spring/resources.groovy
beans = {

myCustomCreator com.demo.myapp.databinding.MyCustomDataBindingSourceCreator

// …
}

343

With that in place the framework will use the bean any time a is needed to deal with a requestmyCustomCreator DataBindingSourceCreator
which has a of "text/custom+demo+csv". contentType

10.2 RSS and Atom
No direct support is provided for RSS or Atom within Grails. You could construct RSS or ATOM feeds with the method's XML capability. Thererender
is however a available for Grails that provides a RSS and Atom builder using the popular library. An example of its usage can beFeeds plugin ROME
seen below:

def feed() {
 render(feedType: , feedVersion:) {"rss" "2.0"
 title = "My test feed"
 link = "http://your.test.server/yourController/feed"

 (article in Article.list()) {for
 entry(article.title) {
 link = "http://your.test.server/article/${article.id}"
 article.content // the contentreturn
 }
 }
 }
}

http://grails.org/plugin/feeds
https://rome.dev.java.net/

344

11 Asynchronous Programming
With modern hardware featuring multiple cores, many programming languages have been adding asynchronous, parallel programming APIs, Groovy
being no exception.

The excellent project features a whole range of different APIs for asynchronous programming techniques including actors, promises, STM and dataGPars
flow concurrency.

Added Grails 2.3, the Async features of Grails aim to simplify concurrent programming within the framework and include the concept of Promises and a
unified event model.

11.1 Promises
A Promise is a concept being embraced by many concurrency frameworks. They are similar to instances, butjava.util.concurrent.Future
include a more user friendly exception handling model, useful features like chaining and the ability to attach listeners.

Promise Basics

In Grails the class provides the entry point to the Promise API:grails.async.Promises

import grails.async.Promises.*static

To create promises you can use the method, which returns an instance of the interface:task grails.async.Promise

def p1 = task { 2 * 2 }
def p2 = task { 4 * 4 }
def p3 = task { 8 * 8 }
assert [4,16,64] == waitAll(p1, p2, p3)

The method waits synchronously, blocking the current thread, for all of the concurrent tasks to complete and returns the results.waitAll

If you prefer not to block the current thread you can use the method:onComplete

onComplete([p1,p2,p3]) { List results ->
 assert [4,16,64] == results
}

https://github.com/GPars/GPars

345

The method will throw an exception if an error occurs executing one of the promises. The originating exception will be thrown. The waitAll
 method, however, will simply not execute the passed closure if an exception occurs. You can register an listener if you wish toonComplete onError

handle exceptions without blocking:

onError([p1,p2,p3]) { Throwable t ->
 println "An error occured ${t.message}"
}

If you have just a single long running promise then the interface provides a similar API on the promise itself. For example:grails.async.Promise

import java.util.concurrent.TimeUnit.*static
 grails.async.Promises.*import static

Promise p = task {
 // running taskLong
}
p.onError { Throwable err ->
 println "An error occured ${err.message}"
}
p.onComplete { result ->
 println "Promise returned $result"
}
// block until result is called
def result = p.get()
// block the specified timefor
def result = p.get(1,MINUTES)

Promise Chaining

It is possible to chain several promises and wait for the chain to complete using the method:then

final polish = { … }
 transform = { … }final
 save = { … }final
 notify = { … }final

Promise promise = task {
 // running tasklong
}
promise.then polish then transform then save then {
 // notify end result
}

If an exception occurs at any point in the chain it will be propagated back to the caller and the next step in the chain will not be called.

346

Promise Lists and Maps

Grails' async API also features the concept of a promise lists and maps. These are represented by the and grails.async.PromiseList
 classes respectively.grails.async.PromiseMap

The easiest way to create a promise list or map is via the method of the class:tasks Promises

import grails.async.Promises.*static

def promiseList = tasks([{ 2 * 2 }, { 4 * 4}, { 8 * 8 }])

assert [4,16,64] == promiseList.get()

The method, when passed a list of closures, returns a . You can also construct a manually:tasks PromiseList PromiseList

import grails.async.*

def list = PromiseList()new
list << { 2 * 2 }
list << { 4 * 4 }
list << { 8 * 8 }
list.onComplete { List results ->
 assert [4,16,64] == results
}

The class does not implement the java.util.List interface, but instead returns a java.util.List from the get()PromiseList
method

Working with instances is largely similar. Again you can either use the method:PromiseMap tasks

import grails.async.Promises.*static

def promiseList = tasks one:{ 2 * 2 },
 two:{ 4 * 4},
 three:{ 8 * 8 }

assert [one:4,two:16,three:64] == promiseList.get()

Or construct a manually:PromiseMap

347

import grails.async.*

def map = PromiseMap()new
map['one'] = { 2 * 2 }
map['two'] = { 4 * 4 }
map['three'] = { 8 * 8 }
map.onComplete { Map results ->
 assert [one:4,two:16,three:64] == results
}

Promise Factories

The class uses a instance to create instances.Promises grails.async.PromiseFactory Promise

The default implementation uses and is called , howeverProject Reactor org.grails.async.factory.reactor.ReactorPromiseFactory
it is possible to swap implementations by setting the variable.Promises.promiseFactory

One common use case for this is unit testing, typically you do not want promises to execute asynchronously during unit tests, as this makes tests harder to
write. For this purpose Grails ships with a instance that makes it easier to testorg.grails.async.factory.SynchronousPromiseFactory
promises:

import org.grails.async.factory.*
 grails.async.*import

Promises.promiseFactory = SynchronousPromiseFactory()new

Using the mechanism it is theoretically possible to plug in other concurrency libraries into the Grails framework. For this you needPromiseFactory
to override the two interfaces and .grails.async.Promise grails.async.PromiseFactory

DelegateAsync Transformation

It is quite common to require both synchronous and asynchronous versions of the same API. Developing both can result in a maintenance problem as
typically the asynchronous API would simply delegate to the synchronous version.

The transformation is designed to mitigate this problem by transforming any synchronous API into an asynchronous one.DelegateAsync

For example, consider the following service:

http://projectreactor.io

348

class BookService {
 List<Book> findBooks(title) {String
 // implementation
 }
}

The method executes synchronously in the same thread as the caller. To make an asynchronous version of this API you can define anotherfindBooks
class as follows:

import grails.async.*

class AsyncBookService {
 @DelegateAsync BookService bookService
}

The transformation will automatically add a new method that looks like the following to the class:DelegateAsync AsyncBookService

Promise<List<Book>> findBooks(title) {String
 Promises.task {
 bookService.findBooks(title)
 }
}

As you see the transform adds equivalent methods that return a Promise and execute asynchronously.

The can then be injected into other controllers and services and used as follows:AsyncBookService

AsyncBookService asyncBookService
def findBooks(title) {String
 asyncBookService.findBooks(title)
 .onComplete { List results ->
 println "Books = ${results}"
 }
}

349

11.2 Events
Grails 3.0 introduces a new Events API based on .Reactor

All services and controllers in Grails 3.0 implement the trait.Events

The trait allows the ability to consume and publish events that are handled by Reactor.Events

The default Reactor configuration utilises a thread pool backed event bus. You can however configure Reactor within , for example:application.yml

reactor:
 dispatchers:
 : myExecutordefault
 myExecutor:
 type: threadPoolExecutor
 size: 5
 backlog: 2048

11.2.1 Consuming Events
There are several ways to consume an event. As mentioned previously services and controllers implement the trait.Events

The trait provides several methods to register event consumers. For example:Events

on() {"myEvent"
 println "Event fired!"
}

Note that if you wish a class (other than a controller or service) to be an event consumer you simply have to implement the trait and ensure theEvents
class is registered as a Spring bean.

For example given the following class:

https://github.com/reactor/reactor
http://grails.github.io/grails-doc/3.0.x/api/grails/events/Events.html
http://grails.github.io/grails-doc/3.0.x/api/grails/events/Events.html

350

import grails.events.*
 javax.annotation.*import

class MyClass Events {implements

@PostConstruct
 void init() {
 on() {"myEvent"
 println "Event fired!"
 }
 }
}

You can override in your class to register it as a Spring bean (or annotate it with):doWithSpring Application Component

Closure doWithSpring() {
 {->
 myClass(MyClass)
 }
 }

11.2.2 Event Notification
The trait also provides methods for notifying of events. For example:Events

notify , "myEvent" "myData"
sendAndReceive , , {"myEvent" "myData"
 println "Got response!"
}

11.2.3 Reactor Spring Annotations
Reactor provides a few useful annotations that can be used for declaratively consuming events in a Grails service.

To declare an event consumer use the annotation:Consumer

351

import reactor.spring.context.annotation.*

@Consumer
class MyService {

}

Then to register to listen for an event use the annotation:Selector

import reactor.spring.context.annotation.*

@Consumer
class MyService {
 @Selector('my.event')
 void myEventListener(data) {Object
 println "GOT EVENT $data"
 }
}

11.2.4 Events from GORM
GORM defines a that you can listen for.number of useful events

Each event is translated into a key that starts with . For example:gorm:

import org.grails.datastore.mapping.engine.event.*
...

on() { PreInsertEvent event ->"gorm:preInsert"
 println "GOT EVENT $event"
}

These events are triggered asynchronously, and so cannot cancel or manipulate the persistence operations. If you want to
do that see the section on in the GORM docsEvents & Auto Timestamping

11.2.5 Events from Spring
Spring also fires a number of useful events. All events in the package are prefixed with .org.springframework spring:

For example:

http://grails.github.io/grails-data-mapping/latest/api/org/grails/datastore/mapping/engine/event/package-summary.html

352

import org.springframework.web.context.support.*
 org.springframework.boot.context.event.*import

...

on() { ApplicationStartedEvent event ->"spring:applicationStarted"
 // fired when the application starts
}

on() { RequestHandledEvent event ->"spring:servletRequestHandled"
 // fired each time a request is handled
}

11.3 Asynchronous GORM
Since Grails 2.3, GORM features an asynchronous programming model that works across all supported datastores (Hibernate, MongoDB etc.).

Although GORM executes persistence operations asynchronously, these operations still block as the underlying database
drivers are not asynchronous. Asynchornous GORM is designed to allow you to isolate these blocking operations onto a
separate thread you can scale and control allowing your controller layer to remain non-blocking.

Async Namespace

The Asynchronous GORM API is available on every domain class via the namespace.async

For example, the following code listing reads 3 objects from the database asynchronously:

import grails.async.Promises.*static

def p1 = Person.async.get(1L)
def p2 = Person.async.get(2L)
def p3 = Person.async.get(3L)
def results = waitAll(p1, p2, p3)

Using the namespace, all the regular GORM methods are available (even dynamic finders), but instead of executing synchronously, the query isasync
run in the background and a instance is returned.Promise

The following code listing shows a few common examples of GORM queries executed asynchronously:

353

import grails.async.Promises.*static

Person.async.list().onComplete { List results ->
 println "Got people = ${results}"
}
def p = Person.async.getAll(1L, 2L, 3L)
List results = p.get()

def p1 = Person.async.findByFirstName()"Homer"
def p2 = Person.async.findByFirstName()"Bart"
def p3 = Person.async.findByFirstName()"Barney"
results = waitAll(p1, p2, p3)

Async and the Session

When using GORM async each promise is executed in a different thread. Since the Hibernate session is not concurrency safe, a new session is bound per
thread.

This is an important consideration when using GORM async (particularly with Hibernate as the persistence engine). The objects returned from
asynchronous queries will be detached entities.

This means you cannot save objects returned from asynchronous queries without first merging them back into session. For example the following will not
work:

def promise = Person.async.findByFirstName()"Homer"
def person = promise.get()
person.firstName = "Bart"
person.save()

Instead you need to merge the object with the session bound to the calling thread. The above code needs to be written as:

def promise = Person.async.findByFirstName()"Homer"
def person = promise.get()
person.merge()
person.firstName = "Bart"

Note that is called first because it may refresh the object from the cache or database, which would result in the change being lost. In general itmerge()
is not recommended to read and write objects in different threads and you should avoid this technique unless absolutely necessary.

354

Finally, another issue with detached objects is that association lazy loading work and you will encounter will not LazyInitializationException
errors if you do so. If you plan to access the associated objects of those returned from asynchronous queries you should use eager queries (which is
recommended anyway to avoid N+1 problems).

Multiple Asynchronous GORM calls

As discussed in the previous section you should avoid reading and writing objects in different threads as merging tends to be inefficient.

However, if you wish to do more complex GORM work asynchronously then the GORM async namespace provides a method that makes thistask
possible. For example:

def promise = Person.async.task {
 withTransaction {
 def person = findByFirstName()"Homer"
 person.firstName = "Bart"
 person.save(flush:) true
 }
}

Person updatedPerson = promise.get()

Note that the GORM method differs from the static method in that it deals with binding a new session to the asynchronoustask Promises.task
thread for you. If you do not use the GORM version and do asynchronous work with GORM then you need to do this manually. Example:

import grails.async.Promises.*static

def promise = task {
 Person.withNewSession {
 // your logic here
 }
}

Async DetachedCriteria

The class also supports the namespace. For example you can do the following:DetachedCriteria async

DetachedCriteria query = Person.where {
 lastName == "Simpson"
}

def promise = query.async.list()

355

11.4 Asynchronous Request Handling
If you are deploying to a Servlet 3.0 container such as Tomcat 7 and above then it is possible to deal with responses asynchronously.

In general for controller actions that execute quickly there is little benefit in handling requests asynchronously. However, for long running controller
actions it is extremely beneficial.

The reason being that with an asynchronous / non-blocking response, the one thread == one request == one response relationship is broken. The container
can keep a client response open and active, and at the same time return the thread back to the container to deal with another request, improving scalability.

For example, if you have 70 available container threads and an action takes a minute to complete, if the actions are not executed in a non-blocking fashion
the likelihood of all 70 threads being occupied and the container not being able to respond is quite high and you should consider asynchronous request
processing.

Since Grails 2.3, Grails features a simplified API for creating asynchronous responses built on the mechanism discussed previously.Promise

The implementation is based on Servlet 3.0 async. So, to enable the async features you need to set your servlet target version to 3.0 in application.yml:

grails:
 servlet:
 version: 3.0

Async Models

A typical activity in a Grails controller is to produce a model (a map of key/value pairs) that can be rendered by a view.

If the model takes a while to produce then the server could arrive at a blocking state, impacting scalability. You tell Grails to build the model
asynchronously by returning a via the method:grails.async.PromiseMap Promises.tasks

import grails.async.Promises.*static
…
def index() {
 tasks books: Book.async.list(),
 totalBooks: Book.async.count(),
 otherValue: {
 // hard workdo
 }
}

Grails will handle the response asynchronously, waiting for the promises to complete before rendering the view. The equivalent synchronous action of the
above is:

356

def index() {
 def otherValue = …
 [books: Book.list() ,
 totalBooks: Book.count(),
 otherValue: otherValue]
}

You can even render different view by passing the to the attribute of the method:PromiseMap model render

import grails.async.Promises.*static
…
def index() {
 render view: , model: tasks(one:{ 2 * 2 },"myView"
 two:{ 3 * 3 })
}

Async Response Rendering

You can also write to the response asynchronously using promises in Grails 2.3 and above:

import grails.async.Promises.*static
class StockController {

def stock(ticker) {String
 task {
 ticker = ticker ?: 'GOOG'
 def url = URL()new "http://download.finance.yahoo.com/d/quotes.csv?s=${ticker}&f=nsl1op&e=.csv"
 price = url.text.split(',')[-1] as Double Double
 render "ticker: $ticker, price: $price"
 }
 }
}

The above example using Yahoo Finance to query stock prices, executing asynchronously and only rendering the response once the result has been
obtained. This is done by returning a instance from the controller action.Promise

If the Yahoo URL is unresponsive the original request thread will not be blocked and the container will not become unresponsive.

11.5 Servlet 3.0 Async
In addition to the higher level async features discussed earlier in the section, you can access the raw Servlet 3.0 asynchronous API from a Grails
application.

357

Servlet 3.0 Asynchronous Rendering

You can render content (templates, binary data etc.) in an asynchronous manner by calling the method which returns an instance of thestartAsync
Servlet 3.0 . Once you have a reference to the you can use Grails' regular render method to render content:AsyncContext AsyncContext

def index() {
 def ctx = startAsync()
 ctx.start {
 Book(title:).save()new "The Stand"
 render template: , model:[books:Book.list()]"books"
 ctx.complete()
 }
}

Note that you must call the method to terminate the connection.complete()

Resuming an Async Request

You resume processing of an async request (for example to delegate to view rendering) by using the method of the class:dispatch AsyncContext

def index() {
 def ctx = startAsync()
 ctx.start {
 // workingdo
 …
 // render view
 ctx.dispatch()
 }
}

358

12 Validation
Grails validation capability is built on and data binding capabilities. However Grails takes this further and provides a unified waySpring's Validator API
to define validation "constraints" with its constraints mechanism.

Constraints in Grails are a way to declaratively specify validation rules. Most commonly they are applied to , however and domain classes URL Mappings
 also support constraints. Command Objects

12.1 Declaring Constraints
Within a domain class are defined with the constraints property that is assigned a code block:constraints

class User {
 loginString
 passwordString
 emailString
 ageInteger

 constraints = {static
 …
 }
}

You then use method calls that match the property name for which the constraint applies in combination with named parameters to specify constraints:

class User {
 ...

 constraints = {static
 login size: 5..15, blank: , unique: false true
 password size: 5..15, blank: false
 email email: , blank: true false
 age min: 18
 }
}

In this example we've declared that the property must be between 5 and 15 characters long, it cannot be blank and must be unique. We've alsologin
applied other constraints to the , and properties.password email age

By default, all domain class properties are not nullable (i.e. they have an implicit constraint).nullable: false

A complete reference for the available constraints can be found in the Quick Reference section under the Constraints heading.

Note that constraints are only evaluated once which may be relevant for a constraint that relies on a value like an instance of .java.util.Date

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/validation/package-summary.html

359

class User {
 ...

 constraints = {static
 // Date object is created when the constraints are evaluated, notthis
 // each time an instance of the User class is validated.
 birthDate max: Date()new
 }
}

A word of warning - referencing domain class properties from constraints

It's very easy to attempt to reference instance variables from the static constraints block, but this isn't legal in Groovy (or Java). If you do so, you will get a
 for your trouble. For example, you may tryMissingPropertyException

class Response {
 Survey survey
 Answer answer

 constraints = {static
 survey blank: false
 answer blank: , inList: survey.answersfalse
 }
}

See how the constraint references the instance property ? That won't work. Instead, use a custom :inList survey validator

class Response {
 …
 constraints = {static
 survey blank: false
 answer blank: , validator: { val, obj -> val in obj.survey.answers }false
 }
}

In this example, the argument to the custom validator is the domain that is being validated, so we can access its property andobj instance survey
return a boolean to indicate whether the new value for the property, , is valid. answer val

12.2 Validating Constraints

Validation Basics

360

Call the method to validate a domain class instance:validate

def user = User(params)new

 (user.validate()) {if
 // something with userdo
}

 {else
 user.errors.allErrors.each {
 println it
 }
}

The property on domain classes is an instance of the Spring interface. The interface provides methods to navigate the validationerrors Errors Errors
errors and also retrieve the original values.

Validation Phases

Within Grails there are two phases of validation, the first one being which occurs when you bind request parameters onto an instance such as:data binding

def user = User(params)new

At this point you may already have errors in the property due to type conversion (such as converting Strings to Dates). You can check these anderrors
obtain the original input value using the API:Errors

if (user.hasErrors()) {
 (user.errors.hasFieldErrors()) {if "login"
 println user.errors.getFieldError().rejectedValue"login"
 }
}

The second phase of validation happens when you call or . This is when Grails will validate the bound values against the youvalidate save constraints
defined. For example, by default the method calls before executing, allowing you to write code like:save validate

http://docs.spring.io/spring/docs/4.0.x/javadoc-api/org/springframework/validation/Errors.html

361

if (user.save()) {
 userreturn
}

 {else
 user.errors.allErrors.each {
 println it
 }
}

12.3 Sharing Constraints Between Classes
A common pattern in Grails is to use for validating user-submitted data and then copy the properties of the command object to thecommand objects
relevant domain classes. This often means that your command objects and domain classes share properties and their constraints. You could manually copy
and paste the constraints between the two, but that's a very error-prone approach. Instead, make use of Grails' global constraints and import mechanism.

Global Constraints

In addition to defining constraints in domain classes, command objects and , you can also define them in other validateable classes
:grails-app/conf/application.groovy

grails.gorm. .constraints = {default
 '*'(nullable: , size: 1..20)true
 myShared(nullable: , blank:)false false
}

These constraints are not attached to any particular classes, but they can be easily referenced from any validateable class:

class User {
 ...

 constraints = {static
 login shared: "myShared"
 }
}

Note the use of the argument, whose value is the name of one of the constraints defined in .shared grails.gorm.default.constraints
Despite the name of the configuration setting, you can reference these shared constraints from any validateable class, such as command objects.

The '*' constraint is a special case: it means that the associated constraints ('nullable' and 'size' in the above example) will be applied to all properties in all
validateable classes. These defaults can be overridden by the constraints declared in a validateable class.

362

Importing Constraints

Grails 2 introduced an alternative approach to sharing constraints that allows you to import a set of constraints from one class into another.

Let's say you have a domain class like so:

class User {
 firstNameString
 lastNameString
 passwordHashString

 constraints = {static
 firstName blank: , nullable: false false
 lastName blank: , nullable: false false
 passwordHash blank: , nullable: false false
 }
}

You then want to create a command object, , that shares some of the properties of the domain class and the corresponding constraints.UserCommand
You do this with the method:importFrom()

class UserCommand {
 firstNameString
 lastNameString
 passwordString
 confirmPasswordString

 constraints = {static
 importFrom User

password blank: , nullable: false false
 confirmPassword blank: , nullable: false false
 }
}

This will import all the constraints from the domain class and apply them to . The import will ignore any constraints in the sourceUser UserCommand
class () that don't have corresponding properties in the importing class (). In the above example, only the 'firstName' andUser UserCommand
'lastName' constraints will be imported into because those are the only properties shared by the two classes.UserCommand

If you want more control over which constraints are imported, use the and arguments. Both of these accept a list of simple or regularinclude exclude
expression strings that are matched against the property names in the source constraints. So for example, if you only wanted to import the 'lastName'
constraint you would use:

363

…
 constraints = {static

 importFrom User, include: []"lastName"
 …
}

or if you wanted all constraints that ended with 'Name':

…
 constraints = {static

 importFrom User, include: [/.*Name/]
 …
}

Of course, does the reverse, specifying which constraints should be imported. exclude not

12.4 Validation on the Client

Displaying Errors

Typically if you get a validation error you redirect back to the view for rendering. Once there you need some way of displaying errors. Grails supports a
rich set of tags for dealing with errors. To render the errors as a list you can use :renderErrors

<g:renderErrors bean= />"${user}"

If you need more control you can use and :hasErrors eachError

<g:hasErrors bean= >"${user}"

 <g:eachError var= bean= >"err" "${user}"
 ${err}
 </g:eachError>

</g:hasErrors>

364

Highlighting Errors

It is often useful to highlight using a red box or some indicator when a field has been incorrectly input. This can also be done with the byhasErrors
invoking it as a method. For example:

<div class='value ${hasErrors(bean:user,field:'login','errors')}'>
 <input type= name= value= />"text" "login" "${fieldValue(bean:user,field:'login')}"
</div>

This code checks if the field of the bean has any errors and if so it adds an CSS class to the , allowing you to use CSS rules tologin user errors div
highlight the .div

Retrieving Input Values

Each error is actually an instance of the class in Spring, which retains the original input value within it. This is useful as you can use the errorFieldError
object to restore the value input by the user using the tag:fieldValue

<input type= name= value= />"text" "login" "${fieldValue(bean:user,field:'login')}"

This code will check for an existing in the bean and if there is obtain the originally input value for the field. FieldError User login

12.5 Validation and Internationalization
Another important thing to note about errors in Grails is that error messages are not hard coded anywhere. The class in Spring resolvesFieldError
messages from message bundles using Grails' support.i18n

Constraints and Message Codes

The codes themselves are dictated by a convention. For example consider the constraints we looked at earlier:

http://docs.spring.io/spring/docs/4.0.x/javadoc-api/org/springframework/validation/FieldError.html
http://docs.spring.io/spring/docs/4.0.x/javadoc-api/org/springframework/validation/FieldError.html

365

package com.mycompany.myapp

class User {
 ...

 constraints = {static
 login size: 5..15, blank: , unique: false true
 password size: 5..15, blank: false
 email email: , blank: true false
 age min: 18
 }
}

If a constraint is violated Grails will by convention look for a message code of the form:

[Name].[Property Name].[Constraint Code]Class

In the case of the constraint this would be so you would need a message such as the following in your blank user.login.blank
 file:grails-app/i18n/messages.properties

user.login.blank=Your login name must be specified!

The class name is looked for both with and without a package, with the packaged version taking precedence. So for example,
com.mycompany.myapp.User.login.blank will be used before user.login.blank. This allows for cases where your domain class message codes clash with a
plugin's.

For a reference on what codes are for which constraints refer to the reference guide for each constraint.

Displaying Messages

The tag will automatically look up messages for you using the tag. If you need more control of rendering you can handle thisrenderErrors message
yourself:

366

<g:hasErrors bean= >"${user}"

 <g:eachError var= bean= >"err" "${user}"
 <g:message error= />"${err}"
 </g:eachError>

</g:hasErrors>

In this example within the body of the tag we use the tag in combination with its argument to read the message for the giveneachError message error
error.

12.6 Applying Validation to Other Classes
 and support validation by default. Other classes may be made validateable by defining the static Domain classes command objects constraints

property in the class (as described above) and then telling the framework about them. It is important that the application register the validateable classes
with the framework. Simply defining the property is not sufficient.constraints

The Validateable Trait

Classes which define the static property and implement the trait will be validateable. Consider this example:constraints Validateable

// src/groovy/com/mycompany/myapp/User.groovy
 com.mycompany.myapppackage

 grails.validation.Validateableimport

class User Validateable {implements
 ...

 constraints = {static
 login size: 5..15, blank: , unique: false true
 password size: 5..15, blank: false
 email email: , blank: true false
 age min: 18
 }
}

http://grails.github.io/grails-doc/3.0.x/api/grails/validation/Validateable.html

367

13 The Service Layer
Grails defines the notion of a service layer. The Grails team discourages the embedding of core application logic inside controllers, as it does not promote
reuse and a clean separation of concerns.

Services in Grails are the place to put the majority of the logic in your application, leaving controllers responsible for handling request flow with redirects
and so on.

Creating a Service

You can create a Grails service by running the command from the root of your project in a terminal window:create-service

grails create-service helloworld.simple

If no package is specified with the create-service script, Grails automatically uses the application name as the package
name.

The above example will create a service at the location . A service's namegrails-app/services/helloworld/SimpleService.groovy
ends with the convention , other than that a service is a plain Groovy class:Service

package helloworld

class SimpleService {
}

13.1 Declarative Transactions

Declarative Transactions

Services are typically involved with coordinating logic between , and hence often involved with persistence that spans large operations.domain classes
Given the nature of services, they frequently require transactional behaviour. You can use programmatic transactions with the method,withTransaction
however this is repetitive and doesn't fully leverage the power of Spring's underlying transaction abstraction.

Services enable transaction demarcation, which is a declarative way of defining which methods are to be made transactional. To enable transactions on a
service use the transform:Transactional

368

import grails.transaction.*

@Transactional
class CountryService {

}

The result is that all methods are wrapped in a transaction and automatic rollback occurs if a method throws a runtime exception (i.e. one that extends
) or an . The propagation level of the transaction is by default set to .RuntimeException Error PROPAGATION_REQUIRED

Checked exceptions do roll back transactions. Even though Groovy blurs the distinction between checked andnot
unchecked exceptions, Spring isn't aware of this and its default behaviour is used, so it's important to understand the
distinction between checked and unchecked exceptions.

Warning: is the way that declarative transactions work. You will not get a transactional servicedependency injection only
if you use the operator such as new new BookService()

The Transactional annotation vs the transactional property

In previous versions of Grails prior to Grails 3.1, Grails created Spring proxies and used the property to enable and disable proxytransactional
creation. These proxies are disabled by default in Grails 3.1 and above in favour of the transformation.@Transactional

If you wish to renable this feature (not recommended) then you must set to true in grails.spring.transactionManagement
 or grails-app/conf/application.yml grails-app/conf/application.groovy

In addition, prior to Grails 3.1 services were transactional by default, as of Grails 3.1 they are only transactional if the
 transformation is applied.@Transactional

Custom Transaction Configuration

Grails also provides and annotations for cases where you need more fine-grained control over transactions@Transactional @NotTransactional
at a per-method level or need to specify an alternative propagation level. For example, the annotation can be used to mark a@NotTransactional
particular method to be skipped when a class is annotated with .@Transactional

The annotation was first introduced in Grails 2.3. Prior to 2.3, Spring'sgrails.transaction.Transactional
@Transactional annotation was used.

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/transaction/TransactionDefinition.html#PROPAGATION_REQUIRED

369

Annotating a service method with disables the default Grails transactional behavior for that service (inTransactional
the same way that adding does) so if you use any annotations you must annotate all methodstransactional=false
that require transactions.

In this example uses a read-only transaction, uses a default read-write transaction, and is not transactionallistBooks updateBook deleteBook
(probably not a good idea given its name).

import grails.transaction.Transactional

class BookService {

@Transactional(readOnly =)true
 def listBooks() {
 Book.list()
 }

@Transactional
 def updateBook() {
 // …
 }

def deleteBook() {
 // …
 }
}

You can also annotate the class to define the default transaction behavior for the whole service, and then override that default per-method. For example,
this service is equivalent to one that has no annotations (since the default is implicitly):transactional=true

import grails.transaction.Transactional

@Transactional
class BookService {

def listBooks() {
 Book.list()
 }

def updateBook() {
 // …
 }

def deleteBook() {
 // …
 }
}

This version defaults to all methods being read-write transactional (due to the class-level annotation), but the method overrides this to use alistBooks
read-only transaction:

370

import grails.transaction.Transactional

@Transactional
class BookService {

@Transactional(readOnly =)true
 def listBooks() {
 Book.list()
 }

def updateBook() {
 // …
 }

def deleteBook() {
 // …
 }
}

Although and aren't annotated in this example, they inherit the configuration from the class-level annotation.updateBook deleteBook

For more information refer to the section of the Spring user guide on .Using @Transactional

Unlike Spring you do not need any prior configuration to use ; just specify the annotation as needed and Grails will detect them upTransactional
automatically.

13.1.1 Transactions Rollback and the Session

Understanding Transactions and the Hibernate Session

When using transactions there are important considerations you must take into account with regards to how the underlying persistence session is handled
by Hibernate. When a transaction is rolled back the Hibernate session used by GORM is cleared. This means any objects within the session become
detached and accessing uninitialized lazy-loaded collections will lead to s.LazyInitializationException

To understand why it is important that the Hibernate session is cleared. Consider the following example:

class Author {
 nameString
 ageInteger

 hasMany = [books: Book]static
}

If you were to save two authors using consecutive transactions as follows:

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/transaction.html#transaction-declarative-annotations

371

Author.withTransaction { status ->
 Author(name: , age: 40).save()new "Stephen King"
 status.setRollbackOnly()
}

Author.withTransaction { status ->
 Author(name: , age: 40).save()new "Stephen King"
}

Only the second author would be saved since the first transaction rolls back the author by clearing the Hibernate session. If the Hibernate sessionsave()
were not cleared then both author instances would be persisted and it would lead to very unexpected results.

It can, however, be frustrating to get s due to the session being cleared.LazyInitializationException

For example, consider the following example:

class AuthorService {

void updateAge(id, age) {int
 def author = Author.get(id)
 author.age = age
 (author.isTooOld()) {if
 AuthorException(, author)throw new "too old"
 }
 }
}

class AuthorController {

def authorService

def updateAge() {
 {try
 authorService.updateAge(params.id, params. ())int "age"
 }
 (e) {catch
 render "Author books ${e.author.books}"
 }
 }
}

In the above example the transaction will be rolled back if the 's age exceeds the maximum value defined in the method byAuthor isTooOld()
throwing an . The references the author but when the association is accessed a AuthorException AuthorException books

 will be thrown because the underlying Hibernate session has been cleared.LazyInitializationException

372

To solve this problem you have a number of options. One is to ensure you query eagerly to get the data you will need:

class AuthorService {
 …
 void updateAge(id, age) {int
 def author = Author.findById(id, [fetch:[books:]])"eager"
 ...

In this example the association will be queried when retrieving the .books Author

This is the optimal solution as it requires fewer queries then the following suggested solutions.

Another solution is to redirect the request after a transaction rollback:

class AuthorController {

AuthorService authorService

def updateAge() {
 {try
 authorService.updateAge(params.id, params. ())int "age"
 }
 (e) {catch
 flash.message = "Can't update age"
 redirect action: , id:params.id"show"
 }
 }
}

In this case a new request will deal with retrieving the again. And, finally a third solution is to retrieve the data for the again to makeAuthor Author
sure the session remains in the correct state:

373

class AuthorController {

def authorService

def updateAge() {
 {try
 authorService.updateAge(params.id, params. ())int "age"
 }
 (e) {catch
 def author = Author.read(params.id)
 render "Author books ${author.books}"
 }
 }
}

Validation Errors and Rollback

A common use case is to rollback a transaction if there are validation errors. For example consider this service:

import grails.validation.ValidationException

class AuthorService {

void updateAge(id, age) {int
 def author = Author.get(id)
 author.age = age
 (!author.validate()) {if
 ValidationException(, author.errors)throw new "Author is not valid"
 }
 }
}

To re-render the same view that a transaction was rolled back in you can re-associate the errors with a refreshed instance before rendering:

374

import grails.validation.ValidationException

class AuthorController {

def authorService

def updateAge() {
 {try
 authorService.updateAge(params.id, params. ())int "age"
 }
 (ValidationException e) {catch
 def author = Author.read(params.id)
 author.errors = e.errors
 render view: , model: [author:author]"edit"
 }
 }
}

13.2 Scoped Services
By default, access to service methods is not synchronised, so nothing prevents concurrent execution of those methods. In fact, because the service is a
singleton and may be used concurrently, you should be very careful about storing state in a service. Or take the easy (and better) road and never store state
in a service.

You can change this behaviour by placing a service in a particular scope. The supported scopes are:

prototype - A new service is created every time it is injected into another class

request - A new service will be created per request

flash - A new service will be created for the current and next request only

flow - In web flows the service will exist for the scope of the flow

conversation - In web flows the service will exist for the scope of the conversation. ie a root flow and its sub flows

session - A service is created for the scope of a user session

singleton (default) - Only one instance of the service ever exists

If your service is , or scoped it must implement and canflash flow conversation java.io.Serializable
only be used in the context of a Web Flow.

To enable one of the scopes, add a static scope property to your class whose value is one of the above, for example

static scope = "flow"

375

Upgrade note: Starting with Grails 2.3, new applications are generated with configuration that defaults the scope of
controllers to . If controllers interact with scoped services, the services effectivelysingleton singleton prototype
behave as per-controller singletons. If non-singleton services are required, controller scope should be changed as well.

See in the user guide for more information.Controllers and Scopes

13.3 Dependency Injection and Services

Dependency Injection Basics

A key aspect of Grails services is the ability to use 's dependency injection features. Grails supports "dependency injection bySpring Framework
convention". In other words, you can use the property name representation of the class name of a service to automatically inject them into controllers, tag
libraries, and so on.

As an example, given a service called , if you define a property called in a controller as follows:BookService bookService

class BookController {
 def bookService
 …
}

In this case, the Spring container will automatically inject an instance of that service based on its configured scope. All dependency injection is done by
name. You can also specify the type as follows:

class AuthorService {
 BookService bookService
}

NOTE: Normally the property name is generated by lower casing the first letter of the type. For example, an instance of the
 class would map to a property named .BookService bookService

To be consistent with standard JavaBean conventions, if the first 2 letters of the class name are upper case, the property
name is the same as the class name. For example, the property name of the class would be JDBCHelperService

, not or .JDBCHelperService jDBCHelperService jdbcHelperService

See section 8.8 of the JavaBean specification for more information on de-capitalization rules.

Only the top level object is subjected to injection as traversing all nested objects to perform injection would be a
performance issue.

http://www.springframework.org/

376

Dependency Injection and Services

You can inject services in other services with the same technique. If you had an that needed to use the , declaring the AuthorService BookService
 as follows would allow that:AuthorService

class AuthorService {
 def bookService
}

Dependency Injection and Domain Classes / Tag Libraries

You can even inject services into domain classes and tag libraries, which can aid in the development of rich domain models and views:

class Book {
 …
 def bookService

def buyBook() {
 bookService.buyBook()this
 }
}

Service Bean Names

The default bean name which is associated with a service can be problematic if there are multiple services with the same name defined in different
packages. For example consider the situation where an application defines a service class named and the applicationcom.demo.ReportingService
uses a plugin named and that plugin provides a service class named . TheReportingUtilities com.reporting.util.ReportingService
default bean name for each of those would be so they would conflict with each other. Grails manages this by changing the defaultreportingService
bean name for services provided by plugins by prefixing the bean name with the plugin name. In the scenario described above the reportingService
bean would be an instance of the class defined in the application and the com.demo.ReportingService

 bean would be an instance of the class providedreportingUtilitiesReportingService com.reporting.util.ReportingService
by the plugin. For all service beans provided by plugins, if there are no other services with the same name within theReportingUtilities
application or other plugins in the application then a bean alias will be created which does not include the plugin name and that alias points to the bean
referred to by the name that does include the plugin name prefix. For example, if the plugin provides a service named ReportingUtilities

 and there is no other in the application or in any of the plugins that the application iscom.reporting.util.AuthorService AuthorService
using then there will be a bean named which is an instance of this reportingUtilitiesAuthorService

 class and there will be a bean alias defined in the context named which points to thatcom.reporting.util.AuthorService authorService
same bean.

377

14 Static Type Checking And Compilation
Groovy is a dynamic language and by default Groovy uses a dynamic dispatch mechanism to carry out method calls and property access. This dynamic
dispatch mechanism provides a lot of flexibility and power to the language. For example, it is possible to dynamically add methods to classes at runtime
and it is possible to dynamically replace existing methods at runtime. Features like these are important and provide a lot of power to the language.
However, there are times when you may want to disable this dynamic dispatch in favor of a more static dispatch mechanism and Groovy provides a way
to do that. The way to tell the Groovy compiler that a particular class should compiled statically is to mark the class with the

 annotation as shown below.groovy.transform.CompileStatic

import groovy.transform.CompileStatic

@CompileStatic
class MyClass {

// class will be statically compiled...this

}

See for more details on how works and why you might want to use it.these notes on Groovy static compilation CompileStatic

One limitation of using is that when you use it you give up access to the power and flexibility offered by dynamic dispatch. ForCompileStatic
example, in Grails you would not be able to invoke a GORM dynamic finder from a class that is marked with because the compilerCompileStatic
cannot verify that the dynamic finder method exists, because it doesn't exist at compile time. It may be that you want to take advantage of Groovy's static
compilation benefits without giving up access to dynamic dispatch for Grails specific things like dynamic finders and this is where

 comes in. behaves just like but is aware of certain Grails featuresgrails.compiler.GrailsCompileStatic GrailsCompileStatic CompileStatic
and allows access to those specific features to be accessed dynamically.

14.1 The GrailsCompileStatic Annotation

GrailsCompileStatic

The annotation may be applied to a class or methods within a class.GrailsCompileStatic

http://docs.groovy-lang.org/docs/latest/html/api/groovy/transform/CompileStatic.html
http://docs.groovy-lang.org/latest/html/documentation/#_static_compilation
http://grails.github.io/grails-doc/3.0.x/api/grails/compiler/GrailsCompileStatic.html

378

import grails.compiler.GrailsCompileStatic

@GrailsCompileStatic
class SomeClass {

// all of the code in class will be statically compiledthis

def methodOne() {
 // …
 }

def methodTwo() {
 // …
 }

def methodThree() {
 // …
 }
}

import grails.compiler.GrailsCompileStatic

class SomeClass {

// methodOne and methodThree will be statically compiled
 // methodTwo will be dynamically compiled

@GrailsCompileStatic
 def methodOne() {
 // …
 }

def methodTwo() {
 // …
 }

@GrailsCompileStatic
 def methodThree() {
 // …
 }
}

It is possible to mark a class with and exclude specific methods by marking them with andGrailsCompileStatic GrailsCompileStatic
specifying that the type checking should be skipped for that particular method as shown below.

379

import grails.compiler.GrailsCompileStatic
 groovy.transform.TypeCheckingModeimport

@GrailsCompileStatic
class SomeClass {

// methodOne and methodThree will be statically compiled
 // methodTwo will be dynamically compiled

def methodOne() {
 // …
 }

@GrailsCompileStatic(TypeCheckingMode.SKIP)
 def methodTwo() {
 // …
 }

def methodThree() {
 // …
 }
}

Code that is marked with will all be statically compiled except for Grails specific interactions that cannot be staticallyGrailsCompileStatic
compiled but that can identify as permissible for dynamic dispatch. These include things like invoking dynamic finders andGrailsCompileStatic
DSL code in configuration blocks like constraints and mapping closures in domain classes.

Care must be taken when deciding to statically compile code. There are benefits associated with static compilation but in order to take advantage of those
benefits you are giving up the power and flexibility of dynamic dispatch. For example if code is statically compiled it cannot take advantage of runtime
metaprogramming enhancements which may be provided by plugins.

14.2 The GrailsTypeChecked Annotation

GrailsTypeChecked

The annotation works a lot like the annotation except that it only enables static typegrails.compiler.GrailsTypeChecked GrailsCompileStatic
checking, not static compilation. This affords compile time feedback for expressions which cannot be validated statically at compile time while still
leaving dynamic dispatch in place for the class.

http://grails.github.io/grails-doc/3.0.x/api/grails/compiler/GrailsTypeChecked.html

380

import grails.compiler.GrailsTypeChecked

@GrailsTypeChecked
class SomeClass {

// all of the code in class will be statically typethis
 // checked and will be dynamically dispatched at runtime

def methodOne() {
 // …
 }

def methodTwo() {
 // …
 }

def methodThree() {
 // …
 }
}

381

15 Testing
Automated testing is a key part of Grails. Hence, Grails provides many ways to making testing easier from low level unit testing to high level functional
tests. This section details the different capabilities that Grails offers for testing.

Grails 1.3.x and below used the class hierarchy for testing in a JUnit 3 style.grails.test.GrailsUnitTestCase
Grails 2.0.x and above deprecates these test harnesses in favour of mixins that can be applied to a range of different kinds
of tests (JUnit 3, JUnit 4, Spock etc.) without subclassing

The first thing to be aware of is that all of the and commands create or tests automatically. Forcreate-* generate-* unit integration
example if you run the command as follows:create-controller

grails create-controller com.acme.app.simple

Grails will create a controller at , and also a unit test at grails-app/controllers/com/acme/app/SimpleController.groovy
. What Grails won't do however is populate the logic inside the test! That istest/unit/com/acme/app/SimpleControllerTests.groovy

left up to you.

The default class name suffix is but as of Grails 1.2.2, the suffix of is also supported.Tests Test

Running Tests

Tests are run with the command:test-app

grails test-app

The command will produce output such as:

382

Running Unit Tests…
Running test FooTests...FAILURE
Unit Tests Completed in 464ms …

Tests failed: 0 errors, 1 failures

whilst showing the reason for each test failure.

You can force a clean before running tests by passing to the command.-clean test-app

Grails writes both plain text and HTML test reports to the directory, along with the original XML files. The HTML reportstarget/test-reports
are generally the best ones to look at.

Using Grails' confers some distinct advantages when executing tests. First, the tests will execute significantly faster on the second andinteractive mode
subsequent runs. Second, a shortcut is available to open the HTML reports in your browser:

open test-report

You can also run your unit tests from within most IDEs.

Targeting Tests

You can selectively target the test(s) to be run in different ways. To run all tests for a controller named you would run:SimpleController

grails test-app SimpleController

This will run any tests for the class named . Wildcards can be used...SimpleController

grails test-app *Controller

383

This will test all classes ending in . Package names can optionally be specified...Controller

grails test-app some.org.*Controller

or to run all tests in a package...

grails test-app some.org.*

or to run all tests in a package including subpackages...

grails test-app some.org.**.*

You can also target particular test methods...

grails test-app SimpleController.testLogin

This will run the test in the tests. You can specify as many patterns in combination as you like...testLogin SimpleController

grails test-app some.org.* SimpleController.testLogin BookController

In Grails 2.x, adding as an argument would only run those tests which failed in the previous test-app run. This-rerun
argument is no longer supported.

384

Debugging

In order to debug your tests via a remote debugger, you can add after in any commands, like so:--debug-jvm grails

grails --debug-jvm test-app

This will open the default Java remote debugging port, 5005, for you to attach a remote debugger from your editor / IDE of choice.

This differs from Grails 2.3 and previous, where the command existed.grails-debug

Targeting Test Phases

In addition to targeting certain tests, you can also target test By default Grails has two testing phases and phases. unit integration.

Grails 2.x uses syntax. In Grails 3.0 it was removed, because it made no sense in Gradle context.phase:type

To execute tests you can run:unit

grails test-app -unit

To run tests you would run...integration

grails test-app -integration

Targeting Tests When Using Phases

Test and phase targeting can be applied at the same time:

385

grails test-app some.org.**.* -unit

This would run all tests in the phase that are in the package or a subpackage. unit some.org

15.1 Unit Testing
Unit testing are tests at the "unit" level. In other words you are testing individual methods or blocks of code without consideration for surrounding
infrastructure. Unit tests are typically run without the presence of physical resources that involve I/O such databases, socket connections or files. This is to
ensure they run as quick as possible since quick feedback is important.

The Test Mixins

Since Grails 2.0, a collection of unit testing mixins is provided by Grails that lets you enhance the behavior of a typical JUnit 3, JUnit 4 or Spock test. The
following sections cover the usage of these mixins.

The previous JUnit 3-style class hierarchy is still present in Grails for backwards compatibility,GrailsUnitTestCase
but is now deprecated. The previous documentation on the subject can be found in the Grails 1.3.x documentation

You won't normally have to import any of the testing classes because Grails does that for you. But if you find that your IDE for example can't find the
classes, here they all are:

grails.test.mixin.TestFor

grails.test.mixin.Mock

grails.test.mixin.TestMixin

grails.test.mixin.support.GrailsUnitTestMixin

grails.test.mixin.domain.DomainClassUnitTestMixin

grails.test.mixin.services.ServiceUnitTestMixin

grails.test.mixin.web.ControllerUnitTestMixin

grails.test.mixin.web.FiltersUnitTestMixin

grails.test.mixin.web.GroovyPageUnitTestMixin

grails.test.mixin.web.UrlMappingsUnitTestMixin

grails.test.mixin.hibernate.HibernateTestMixin

Note that you're only ever likely to use the first two explicitly. The rest are there for reference.

Test Mixin Basics

Most testing can be achieved via the annotation in combination with the annotation for mocking collaborators. For example, to test aTestFor Mock
controller and associated domains you would define the following:

http://grails.org/doc/1.3.x/guide/9.%20Testing.html

386

@TestFor(BookController)
@Mock([Book, Author, BookService])

The annotation defines the class under test and will automatically create a field for the type of class under test. For example in the above case aTestFor
"controller" field will be present, however if was defined for a service a "service" field would be created and so on.TestFor

The annotation creates mock version of any collaborators. There is an in-memory implementation of GORM that will simulate most interactionsMock
with the GORM API.

doWithSpring and doWithConfig callback methods, FreshRuntime annotation

The callback method can be used to add beans with the BeanBuilder DSL. There is the callback method for changingdoWithSpring doWithConfig
the grailsApplication.config values before the grailsApplication instance of the test runtime gets initialized.

import grails.test.mixin.support.GrailsUnitTestMixin

 org.junit.ClassRuleimport
 org.junit.rules.TestRuleimport

 spock.lang.Ignore;import
 spock.lang.IgnoreRestimport
 spock.lang.Shared;import
 spock.lang.Specificationimport

@TestMixin(GrailsUnitTestMixin)
class StaticCallbacksSpec Specification {extends
 doWithSpring = {static
 myService(MyService)
 }

 doWithConfig(c) {static
 c.myConfigValue = 'Hello'
 }

def () {"grailsApplication is not "null
 expect:
 grailsApplication != null
 }

def () {"doWithSpring callback is executed"
 expect:
 grailsApplication.mainContext.getBean('myService') != null
 }

def (){"doWithConfig callback is executed"
 expect:
 config.myConfigValue == 'Hello'
 }
}

You can also use these callbacks without "static" together with the annotation. In this case, a cleangrails.test.runtime.FreshRuntime
application context and grails application instance is initialized for each test method call.

http://grails.github.io/grails-doc/3.0.x/api/grails/test/runtime/FreshRuntime.html

387

import grails.test.mixin.support.GrailsUnitTestMixin
 grails.test.runtime.FreshRuntime;import

 org.junit.ClassRuleimport
 org.junit.rules.TestRuleimport

 spock.lang.Ignore;import
 spock.lang.IgnoreRestimport
 spock.lang.Shared;import
 spock.lang.Specificationimport

@FreshRuntime
@TestMixin(GrailsUnitTestMixin)
class TestInstanceCallbacksSpec Specification {extends
 def doWithSpring = {
 myService(MyService)
 }

def doWithConfig(c) {
 c.myConfigValue = 'Hello'
 }

def () {"grailsApplication is not "null
 expect:
 grailsApplication != null
 }

def () {"doWithSpring callback is executed"
 expect:
 grailsApplication.mainContext.getBean('myService') != null
 }

def (){"doWithConfig callback is executed"
 expect:
 config.myConfigValue == 'Hello'
 }
}

You can use together with doWithSpring and the annotation toorg.grails.spring.beans.factory.InstanceFactoryBean FreshRuntime
mock beans in tests.

http://grails.github.io/grails-doc/3.0.x/api/org/grails/spring/beans/factory/InstanceFactoryBean.html
http://grails.github.io/grails-doc/3.0.x/api/grails/test/runtime/FreshRuntime.html

388

import grails.test.mixin.support.GrailsUnitTestMixin
 grails.test.runtime.FreshRuntimeimport

 org.grails.spring.beans.factory.InstanceFactoryBeanimport
 org.junit.ClassRuleimport

 spock.lang.Sharedimport
 spock.lang.Specificationimport

@FreshRuntime
@TestMixin(GrailsUnitTestMixin)
class MockedBeanSpec Specification {extends
 def myService=Mock(MyService)

def doWithSpring = {
 myService(InstanceFactoryBean, myService, MyService)
 }

def () {"doWithSpring callback is executed"
 when:
 def myServiceBean=grailsApplication.mainContext.getBean('myService')
 myServiceBean.prova()
 then:
 1 * myService.prova() >> { }true
 }
}

The DirtiesRuntime annotation

Test methods may be marked with the annotation to indicate that the test modifies the runtime in waysgrails.test.runtime.DirtiesRuntime
which might be problematic for other tests and as such the runtime should be refreshed after this test method runs.

import grails.test.mixin.TestFor
 spock.lang.Specificationimport
 grails.test.runtime.DirtiesRuntimeimport

@TestFor(PersonController)
class PersonControllerSpec Specification {extends

@DirtiesRuntime
 void () {"a test method which modifies the runtime"
 when:
 Person.metaClass.someMethod = { … }
 // ...

then:
 // …
 }

void () {"a test method which should not be affected by the previous test method"
 // …
 }
}

http://grails.github.io/grails-doc/3.0.x/api/grails/test/runtime/DirtiesRuntime.html

389

Sharing test runtime grailsApplication instance and beans for several test classes

It's possible to share a single grailsApplication instance and beans for several test classes. This feature is activated by the annotation.SharedRuntime
This annotation takes an optional class parameter implements interface. All test classes referencing the sameSharedRuntimeConfigurer
SharedRuntimeConfigurer implementation class will share the same runtime during a single test run. The value class for SharedRuntimeConfigurer
annotation can also implement . In this case the instance of the class will be registered as a test event interceptor for the testTestEventInterceptor
runtime.

Loading application beans in unit tests

Adding field definition to a unit test class makes the Grails unit test runtime load all bean definitions from static loadExternalBeans = true
 and files.grails-app/conf/spring/resources.groovy grails-app/conf/spring/resources.xml

import spock.lang.Issue
 spock.lang.Specificationimport
 grails.test.mixin.support.GrailsUnitTestMixinimport

@TestMixin(GrailsUnitTestMixin)
class LoadExternalBeansSpec Specification {extends
 loadExternalBeans = static true

void (){"should load external beans"
 expect:
 applicationContext.getBean('simpleBean') == 'Hello world!'
 }
}

15.1.1 Unit Testing Controllers

The Basics

You use the annotation to unit test controllers. Using in this manner activates the grails.test.mixin.TestFor TestFor
 and its associated API. For example:grails.test.mixin.web.ControllerUnitTestMixin

import grails.test.mixin.TestFor
 spock.lang.Specificationimport

@TestFor(SimpleController)
class SimpleControllerSpec Specification {extends

void () {"test something"
 }
}

Adding the annotation to a controller causes a new field to be automatically created for the controller under test.TestFor controller

http://grails.github.io/grails-doc/3.0.x/api/grails/test/runtime/SharedRuntime.html
http://grails.github.io/grails-doc/3.0.x/api/grails/test/runtime/SharedRuntimeConfigurer.html
http://grails.github.io/grails-doc/3.0.x/api/grails/test/runtime/TestEventInterceptor.html

390

The annotation will also automatically annotate any public methods starting with "test" with JUnit 4's @TestTestFor
annotation. If any of your test method don't start with "test" just add this manually

To test the simplest "Hello World"-style example you can do the following:

// Test class
class SimpleController {
 def hello() {
 render "hello"
 }
}

import grails.test.mixin.TestFor
 spock.lang.Specificationimport

@TestFor(SimpleController)
class SimpleControllerSpec Specification {extends

void () {"test hello"
 when:
 controller.hello()

then:
 response.text == 'hello'
 }
}

The object is an instance of (from the package response GrailsMockHttpServletResponse
) which extends Spring's class and has a number oforg.codehaus.groovy.grails.plugins.testing MockHttpServletResponse

useful methods for inspecting the state of the response.

For example to test a redirect you can use the property:redirectedUrl

class SimpleController {
 def index() {
 redirect action: 'hello'
 }
 …
}

391

import grails.test.mixin.TestFor
 spock.lang.Specificationimport

@TestFor(SimpleController)
class SimpleControllerSpec Specification {extends

void 'test index'() {
 when:
 controller.index()

then:
 response.redirectedUrl == '/simple/hello'
 }
}

Many actions make use of the parameter data associated with the request. For example, the 'sort', 'max', and 'offset' parameters are quite common.
Providing these in the test is as simple as adding appropriate values to a special variable:params

import grails.test.mixin.TestFor
 spock.lang.Specificationimport

@TestFor(PersonController)
class PersonControllerSpec Specification {extends

void 'test list'() {
 when:
 params.sort = 'name'
 params.max = 20
 params.offset = 0
 controller.list()

then:
 // …
 }
}

You can even control what type of request the controller action sees by setting the property of the mock request:method

392

import grails.test.mixin.TestFor
 spock.lang.Specificationimport

@TestFor(PersonController)
class PersonControllerSpec Specification {extends

void 'test save'() {
 when:
 request.method = 'POST'
 controller.save()

then:
 // …
 }
}

This is particularly important if your actions do different things depending on the type of the request. Finally, you can mark a request as AJAX like so:

import grails.test.mixin.TestFor
 spock.lang.Specificationimport

@TestFor(PersonController)
class PersonControllerSpec Specification {extends

void 'test list'() {
 when:
 request.method = 'POST'
 request.makeAjaxRequest()
 controller.getPage()

then:
 // …
 }
}

You only need to do this though if the code under test uses the property on the request.xhr

Testing View Rendering

To test view rendering you can inspect the state of the controller's property (an instance of modelAndView
) or you can use the and properties provided by the mixin:org.springframework.web.servlet.ModelAndView view model

393

class SimpleController {
 def home() {
 render view: , model: [title:]"homePage" "Hello World"
 }
 …
}

import grails.test.mixin.TestFor
 spock.lang.Specificationimport

@TestFor(SimpleController)
class SimpleControllerSpec Specification {extends

void 'test home'() {
 when:
 controller.home()

then:
 view == '/simple/homePage'
 model.title == 'Hello World'
 }
}

Note that the view string is the absolute view path, so it starts with a '/' and will include path elements, such as the directory named after the action's
controller.

Testing Template Rendering

Unlike view rendering, template rendering will actually attempt to write the template directly to the response rather than returning a ModelAndView
hence it requires a different approach to testing.

Consider the following controller action:

class SimpleController {
 def display() {
 render template:"snippet"
 }
}

In this example the controller will look for a template in . You can test this as follows:grails-app/views/simple/_snippet.gsp

394

import grails.test.mixin.TestFor
 spock.lang.Specificationimport

@TestFor(SimpleController)
class SimpleControllerSpec Specification {extends

void 'test display'() {
 when:
 controller.display()

then:
 response.text == 'contents of the template'
 }
}

However, you may not want to render the real template, but just test that is was rendered. In this case you can provide mock Groovy Pages:

import grails.test.mixin.TestFor
 spock.lang.Specificationimport

@TestFor(SimpleController)
class SimpleControllerSpec Specification {extends

void 'test display with mock template'() {
 when:
 views['/simple/_snippet.gsp'] = 'mock template contents'
 controller.display()

then:
 response.text == 'mock template contents'
 }
}

Testing Actions Which Return A Map

When a controller action returns a that may be inspected directly to assert that it contains the expected data:java.util.Map Map

class SimpleController {
 def showBookDetails() {
 [title: 'The Nature Of Necessity', author: 'Alvin Plantinga']
 }
}

395

import grails.test.mixin.TestFor
 spock.lang.Specificationimport

@TestFor(SimpleController)
class SimpleControllerSpec Specification {extends

void 'test show book details'() {
 when:
 def model = controller.showBookDetails()

then:
 model.author == 'Alvin Plantinga'
 }
}

Testing XML and JSON Responses

XML and JSON response are also written directly to the response. Grails' mocking capabilities provide some conveniences for testing XML and JSON
response. For example consider the following action:

def renderXml() {
 render(contentType:) {"text/xml"
 book(title:)"Great"
 }
}

This can be tested using the property of the response:xml

import grails.test.mixin.TestFor
 spock.lang.Specificationimport

@TestFor(SimpleController)
class SimpleControllerSpec Specification {extends

void 'test render xml'() {
 when:
 controller.renderXml()

then:
 response.text == "<book title='Great'/>"
 response.xml.@title.text() == 'Great'
 }
}

The property is a parsed result from Groovy's class which is very convenient for parsing XML.xml XmlSlurper

http://groovy.codehaus.org/Reading+XML+using+Groovy's+XmlSlurper

396

Testing JSON responses is pretty similar, instead you use the property:json

// controller action
def renderJson() {
 render(contentType:) {"application/json"
 book = "Great"
 }
}

import grails.test.mixin.TestFor
 spock.lang.Specificationimport

@TestFor(SimpleController)
class SimpleControllerSpec Specification {extends

void 'test render json'() {
 when:
 controller.renderJson()

then:
 response.text == '{ : }'"book" "Great"
 response.json.book == 'Great'
 }
}

The property is an instance of which is a map-like structure that is useful forjson org.codehaus.groovy.grails.web.json.JSONElement
parsing JSON responses.

Testing XML and JSON Requests

Grails provides various convenient ways to automatically parse incoming XML and JSON packets. For example you can bind incoming JSON or XML
requests using Grails' data binding:

def consumeBook(Book b) {
 render "The title is ${b.title}."
}

To test this Grails provides an easy way to specify an XML or JSON packet via the or properties. For example the above action can be testedxml json
by specifying a String containing the XML:

397

import grails.test.mixin.TestFor
 grails.test.mixin.Mockimport
 spock.lang.Specificationimport

@TestFor(SimpleController)
@Mock([Book])
class SimpleControllerSpec Specification {extends
 void 'test consume book xml'() {
 when:
 request.xml = '<book><title>Wool</title></book>'
 controller.consumeBook()

then:
 response.text == 'The title is Wool.'
 }
}

Or alternatively a domain instance can be specified and it will be auto-converted into the appropriate XML request:

import grails.test.mixin.TestFor
 grails.test.mixin.Mockimport
 spock.lang.Specificationimport

@TestFor(SimpleController)
@Mock([Book])
class SimpleControllerSpec Specification {extends

void 'test consume book xml'() {
 when:
 request.xml = Book(title: 'Shift')new
 controller.consumeBook()

then:
 response.text == 'The title is Shift.'
 }
}

The same can be done for JSON requests:

398

import grails.test.mixin.TestFor
 grails.test.mixin.Mockimport
 spock.lang.Specificationimport

@TestFor(SimpleController)
@Mock([Book])
class SimpleControllerSpec Specification {extends

void 'test consume book json'() {
 when:
 request.json = Book(title: 'Shift')new
 controller.consumeBook()

then:
 response.text == 'The title is Shift.'
 }
}

If you prefer not to use Grails' data binding but instead manually parse the incoming XML or JSON that can be tested too. For example consider the
controller action below:

def consume() {
 request.withFormat {
 xml {
 render "The XML Title Is ${request.XML.@title}."
 }
 json {
 render "The JSON Title Is ${request.JSON.title}."
 }
 }
}

To test the XML request you can specify the XML as a string:

399

import grails.test.mixin.TestFor
 spock.lang.Specificationimport

@TestFor(SimpleController)
class SimpleControllerSpec Specification {extends

void 'test consume xml'() {
 when:
 request.xml = '<book title= />'"The Stand"
 controller.consume()

then:
 response.text == 'The XML Title Is The Stand.'
 }

void 'test consume json'() {
 when:
 request.json = '{title: }'"The Stand"
 controller.consume()

then:
 response.text == 'The JSON Title Is The Stand.'
 }
}

Testing Mime Type Handling

You can test mime type handling and the method quite simply by setting the request's attribute:withFormat contentType

// controller action
def sayHello() {
 def data = [Hello:]"World"
 request.withFormat {
 xml { render data as grails.converters.XML }
 json { render data as grails.converters.JSON }
 html data
 }
}

400

import grails.test.mixin.TestFor
 spock.lang.Specificationimport

@TestFor(SimpleController)
class SimpleControllerSpec Specification {extends

void 'test say hello xml'() {
 when:
 request.contentType = 'application/xml'
 controller.sayHello()

then:
 response.text == '<?xml version= encoding= ?><map><entry key= >World</entry></map>'"1.0" "UTF-8" "Hello"
 }

void 'test say hello json'() {
 when:
 request.contentType = 'application/json'
 controller.sayHello()

then:
 response.text == '{ : }'"Hello" "World"
 }
}

There are constants provided by for all of the common common content types as shown below:ControllerUnitTestMixin

import grails.test.mixin.TestFor
 spock.lang.Specificationimport

@TestFor(SimpleController)
class SimpleControllerSpec Specification {extends

void 'test say hello xml'() {
 when:
 request.contentType = XML_CONTENT_TYPE
 controller.sayHello()

then:
 response.text == '<?xml version= encoding= ?><map><entry key= >World</entry></map>'"1.0" "UTF-8" "Hello"
 }

void 'test say hello json'() {
 when:
 request.contentType = JSON_CONTENT_TYPE
 controller.sayHello()

then:
 response.text == '{ : }'"Hello" "World"
 }
}

The defined constants are listed below:

401

Constant Value

ALL_CONTENT_TYPE */*

FORM_CONTENT_TYPE application/x-www-form-urlencoded

MULTIPART_FORM_CONTENT_TYPE multipart/form-data

HTML_CONTENT_TYPE text/html

XHTML_CONTENT_TYPE application/xhtml+xml

XML_CONTENT_TYPE application/xml

JSON_CONTENT_TYPE application/json

TEXT_XML_CONTENT_TYPE text/xml

TEXT_JSON_CONTENT_TYPE text/json

HAL_JSON_CONTENT_TYPE application/hal+json

HAL_XML_CONTENT_TYPE application/hal+xml

ATOM_XML_CONTENT_TYPE application/atom+xml

Testing Duplicate Form Submissions

Testing duplicate form submissions is a little bit more involved. For example if you have an action that handles a form such as:

def handleForm() {
 withForm {
 render "Good"
 }.invalidToken {
 render "Bad"
 }
}

you want to verify the logic that is executed on a good form submission and the logic that is executed on a duplicate submission. Testing the bad
submission is simple. Just invoke the controller:

402

import grails.test.mixin.TestFor
 spock.lang.Specificationimport

@TestFor(SimpleController)
class SimpleControllerSpec Specification {extends

void 'test duplicate form submission'() {
 when:
 controller.handleForm()

then:
 response.text == 'Bad'
 }
}

Testing the successful submission requires providing an appropriate :SynchronizerToken

import grails.test.mixin.TestFor
 spock.lang.Specificationimport

 org.codehaus.groovy.grails.web.servlet.mvc.SynchronizerTokensHolderimport

@TestFor(SimpleController)
class SimpleControllerSpec Specification {extends

void 'test valid form submission'() {
 when:
 def tokenHolder = SynchronizerTokensHolder.store(session)

params[SynchronizerTokensHolder.TOKEN_URI] = '/controller/handleForm'
 params[SynchronizerTokensHolder.TOKEN_KEY] =
tokenHolder.generateToken(params[SynchronizerTokensHolder.TOKEN_URI])
 controller.handleForm()

then:
 response.text == 'Good'
 }
}

If you test both the valid and the invalid request in the same test be sure to reset the response between executions of the controller:

403

import grails.test.mixin.TestFor
 spock.lang.Specificationimport

 org.codehaus.groovy.grails.web.servlet.mvc.SynchronizerTokensHolderimport

@TestFor(SimpleController)
class SimpleControllerSpec Specification {extends

void 'test form submission'() {
 when:
 controller.handleForm()

then:
 response.text == 'Bad'

when:
 response.reset()
 def tokenHolder = SynchronizerTokensHolder.store(session)

params[SynchronizerTokensHolder.TOKEN_URI] = '/controller/handleForm'
 params[SynchronizerTokensHolder.TOKEN_KEY] =
tokenHolder.generateToken(params[SynchronizerTokensHolder.TOKEN_URI])
 controller.handleForm()

then:
 response.text == 'Good'
 }
}

Testing File Upload

You use the class to test file uploads. For example consider the following controller action:GrailsMockMultipartFile

def uploadFile() {
 MultipartFile file = request.getFile()"myFile"
 file.transferTo(File())new "/local/disk/myFile"
}

To test this action you can register a with the request:GrailsMockMultipartFile

404

import grails.test.mixin.TestFor
 spock.lang.Specificationimport

 org.codehaus.groovy.grails.plugins.testing.GrailsMockMultipartFileimport

@TestFor(SimpleController)
class SimpleControllerSpec Specification {extends

void 'test file upload'() {
 when:
 def file = GrailsMockMultipartFile('myFile', 'some file contents'.bytes)new
 request.addFile file
 controller.uploadFile()

then:
 file.targetFileLocation.path == '/local/disk/myFile'
 }
}

The constructor arguments are the name and contents of the file. It has a mock implementation of the GrailsMockMultipartFile transferTo
method that simply records the and doesn't write to disk.targetFileLocation

Testing Command Objects

Special support exists for testing command object handling with the method. For example consider the following action:mockCommandObject

class SimpleController {
 def handleCommand(SimpleCommand simple) {
 (simple.hasErrors()) {if
 render 'Bad'
 } {else
 render 'Good'
 }
 }
}

class SimpleCommand {
 nameString

 constraints = {static
 name blank: false
 }
}

To test this you mock the command object, populate it and then validate it as follows:

405

import grails.test.mixin.TestFor
 spock.lang.Specificationimport

@TestFor(SimpleController)
class SimpleControllerSpec Specification {extends

void 'test valid command object'() {
 given:
 def simpleCommand = SimpleCommand(name: 'Hugh')new
 simpleCommand.validate()

when:
 controller.handleCommand(simpleCommand)

then:
 response.text == 'Good'
 }

void 'test invalid command object'() {
 given:
 def simpleCommand = SimpleCommand(name: '')new
 simpleCommand.validate()

when:
 controller.handleCommand(simpleCommand)

then:
 response.text == 'Bad'
 }
}

The testing framework also supports allowing Grails to create the command object instance automatically. To test this invoke the no-arg version of the
controller action method. Grails will create an instance of the command object, perform data binding on it using the request parameters and validate the
object just like it does in when the application is running. See the test below.

import grails.test.mixin.TestFor
 spock.lang.Specificationimport

@TestFor(SimpleController)
class SimpleControllerSpec Specification {extends

void 'test valid command object'() {
 when:
 params.name = 'Hugh'
 controller.handleCommand()

then:
 response.text == 'Good'
 }

void 'test invalid command object'() {
 when:
 params.name = ''
 controller.handleCommand()

then:
 response.text == 'Bad'
 }
}

406

Testing allowedMethods

The unit testing environment respects the property in controllers. If a controller action is limited to be accessed with certain requestallowedMethods
methods, the unit test must be constructed to deal with that.

// grails-app/controllers/com/demo/DemoController.groovypackage com.demo

class DemoController {

 allowedMethods = [save: 'POST', update: 'PUT', delete: 'DELETE']static

def save() {
 render 'Save was successful!'
 }

// …
}

// test/unit/com/demo/DemoControllerSpec.groovy
 com.demopackage

 grails.test.mixin.TestForimport
 spock.lang.Specificationimport
 javax.servlet.http.HttpServletResponse.*import static

@TestFor(DemoController)
class DemoControllerSpec Specification {extends

void () {"test a valid request method"
 when:
 request.method = 'POST'
 controller.save()

then:
 response.status == SC_OK
 response.text == 'Save was successful!'
 }

void () {"test an invalid request method"
 when:
 request.method = 'DELETE'
 controller.save()

then:
 response.status == SC_METHOD_NOT_ALLOWED
 }
}

Testing Calling Tag Libraries

You can test calling tag libraries using , although the mechanism for testing the tag called varies from tag to tag. ForControllerUnitTestMixin
example to test a call to the tag, add a message to the . Consider the following action:message messageSource

407

def showMessage() {
 render g.message(code:)"foo.bar"
}

This can be tested as follows:

import grails.test.mixin.TestFor
 spock.lang.Specificationimport

@TestFor(SimpleController)
class SimpleControllerSpec Specification {extends

void 'test render message tag'() {
 given:
 messageSource.addMessage 'foo.bar', request.locale, 'Hello World'

when:
 controller.showMessage()

then:
 response.text == 'Hello World'
 }
}

See for more information. unit testing tag libraries

15.1.2 Unit Testing Tag Libraries

The Basics

Tag libraries and GSP pages can be tested with the mixin. To use the mixin declaregrails.test.mixin.web.GroovyPageUnitTestMixin
which tag library is under test with the annotation:TestFor

import grails.test.mixin.TestFor
 spock.lang.Specificationimport

@TestFor(SimpleTagLib)
class SimpleTagLibSpec Specification {extends

void () {"test something"
 }
}

408

Adding the annotation to a TagLib class causes a new field to be automatically created for the TagLib class under test. The tagLibTestFor tagLib
field can be used to test calling tags as function calls. The return value of a function call is either a instance or the object returned fromStreamCharBuffer
the tag closure when feature is used.returnObjectForTags

Note that if you are testing invocation of a custom tag from a controller you can combine the and the ControllerUnitTestMixin
 using the annotation:GroovyPageUnitTestMixin Mock

import grails.test.mixin.TestFor
 grails.test.mixin.Mockimport
 spock.lang.Specificationimport

@TestFor(SimpleController)
@Mock(SimpleTagLib)
class SimpleControllerSpec Specification {extends

}

Testing Custom Tags

The core Grails tags don't need to be enabled during testing, however custom tag libraries do. The class provides a GroovyPageUnitTestMixin
 method that you can use to mock a custom tag library. For example consider the following tag library:mockTagLib()

class SimpleTagLib {

 namespace = 's'static

def hello = { attrs, body ->
 out << "Hello ${attrs.name ?: 'World'}"
 }

def bye = { attrs, body ->
 out << "Bye ${attrs.author.name ?: 'World'}"
 }
}

You can test this tag library by using and supplying the name of the tag library:TestFor

http://grails.github.io/grails-doc/3.0.x/api/org/grails/buffer/StreamCharBuffer.html

409

import grails.test.mixin.TestFor
 spock.lang.Specificationimport

@TestFor(SimpleTagLib)
class SimpleTagLibSpec Specification {extends

void () {"test hello tag"
 expect:
 applyTemplate('<s:hello />') == 'Hello World'
 applyTemplate('<s:hello name= />') == 'Hello Fred'"Fred"
 applyTemplate('<s:bye author= />', [author: Author(name: 'Fred')]) == 'Bye Fred'"${author}" new
 }

void () {"test tag calls"
 expect:
 tagLib.hello().toString() == 'Hello World'
 tagLib.hello(name: 'Fred').toString() == 'Hello Fred'
 tagLib.bye(author: Author(name: 'Fred')).toString == 'Bye Fred'new
 }
}

Alternatively, you can use the annotation and mock multiple tag libraries using the method:TestMixin mockTagLib()

import spock.lang.Specification
 grails.test.mixin.TestMixinimport
 grails.test.mixin.web.GroovyPageUnitTestMixinimport

@TestMixin(GroovyPageUnitTestMixin)
class MultipleTagLibSpec Specification {extends

void () {"test multiple tags"
 given:
 mockTagLib(SomeTagLib)
 mockTagLib(SomeOtherTagLib)

expect:
 // …
 }
}

The provides convenience methods for asserting that the template output equals or matches an expected value.GroovyPageUnitTestMixin

410

import grails.test.mixin.TestFor
 spock.lang.Specificationimport

@TestFor(SimpleTagLib)
class SimpleTagLibSpec Specification {extends

void () {"test hello tag"
 expect:
 assertOutputEquals ('Hello World', '<s:hello />')
 assertOutputMatches (/.*Fred.*/, '<s:hello name= />')"Fred"
 }
}

Testing View and Template Rendering

You can test rendering of views and templates in via the method provided by grails-app/views render(Map) GroovyPageUnitTestMixin
:

import spock.lang.Specification
 grails.test.mixin.TestMixinimport
 grails.test.mixin.web.GroovyPageUnitTestMixinimport

@TestMixin(GroovyPageUnitTestMixin)
class RenderingSpec Specification {extends

void () {"test rendering template"
 when:
 def result = render(template: '/simple/hello')

then:
 result == 'Hello World!'
 }
}

This will attempt to render a template found at the location . Note that if the template depends on anygrails-app/views/simple/_hello.gsp
custom tag libraries you need to call as described in the previous section.mockTagLib

Some core tags use the active controller and action as input. In GroovyPageUnitTestMixin tests, you can manually set the active controller and action
name by setting controllerName and actionName properties on the webRequest object:

webRequest.controllerName = 'simple'
 webRequest.actionName = 'hello'

411

15.1.3 Unit Testing Domains

Overview

Domain class interaction can be tested without involving a real database connection using or by using the DomainClassUnitTestMixin
.HibernateTestMixin

The GORM implementation in DomainClassUnitTestMixin is using a simple in-memory implementation. Note that this hasConcurrentHashMap
limitations compared to a real GORM implementation.

A large, commonly-used portion of the GORM API can be mocked using including:DomainClassUnitTestMixin

Simple persistence methods like , etc.save() delete()

Dynamic Finders

Named Queries

Query-by-example

GORM Events

 uses Hibernate 4 and a H2 in-memory database. This makes it possible to use all GORM features also in Grails unit tests.HibernateTestMixin

All features of GORM for Hibernate can be tested within a unit test including:HibernateTestMixin

String-based HQL queries

composite identifiers

dirty checking methods

any direct interaction with Hibernate

The implementation behind takes care of setting up the Hibernate with the in-memory H2 database. It only configures theHibernateTestMixin
given domain classes for use in a unit test. The @Domain annotation is used to tell which domain classes should be configured.

DomainClassUnitTestMixin Basics

 is typically used in combination with testing either a controller, service or tag library where the domain is a mockDomainClassUnitTestMixin
collaborator defined by the annotation:Mock

import grails.test.mixin.TestFor
 grails.test.mixin.Mockimport
 spock.lang.Specificationimport

@TestFor(BookController)
@Mock(Book)
class BookControllerSpec Specification {extends
 // …
}

412

The example above tests the class and mocks the behavior of the domain class as well. For example consider a typicalSimpleController Simple
scaffolded controller action:save

class BookController {
 def save() {
 def book = Book(params)new
 (book.save(flush:)) {if true
 flash.message = message(
 code: ' .created.message',default
 args: [message(code: 'book.label', : 'Book'), book.id])default
 redirect(action: , id: book.id)"show"
 }
 {else
 render(view: , model: [bookInstance: book])"create"
 }
 }
}

Tests for this action can be written as follows:

import grails.test.mixin.TestFor
 grails.test.mixin.Mockimport
 spock.lang.Specificationimport

@TestFor(BookController)
@Mock(Book)
class BookControllerSpec Specification {extends
 void () {"test saving an invalid book"
 when:
 controller.save()

then:
 model.bookInstance != null
 view == '/book/create'
 }

void () {"test saving a valid book"
 when:
 params.title = "The Stand"
 params.pages = "500"

controller.save()

then:
 response.redirectedUrl == '/book/show/1'
 flash.message != null
 Book.count() == 1
 }
}

 annotation also supports a list of mock collaborators if you have more than one domain to mock:Mock

413

import grails.test.mixin.TestFor
 grails.test.mixin.Mockimport
 spock.lang.Specificationimport

@TestFor(BookController)
@Mock([Book, Author])
class BookControllerSpec Specification {extends
 // …
}

Alternatively you can also use the directly with the annotation and then call the methodDomainClassUnitTestMixin TestMixin mockDomain
to mock domains during your test:

import grails.test.mixin.TestFor
 grails.test.mixin.TestMixinimport
 spock.lang.Specificationimport
 grails.test.mixin.domain.DomainClassUnitTestMixinimport

@TestFor(BookController)
@TestMixin(DomainClassUnitTestMixin)
class BookControllerSpec Specification {extends

void setupSpec() {
 mockDomain(Book)
 }

void () {"test saving an invalid book"
 when:
 controller.save()

then:
 model.bookInstance != null
 view == '/book/create'
 }

void () {"test saving a valid book"
 when:
 params.title = "The Stand"
 params.pages = "500"

controller.save()

then:
 response.redirectedUrl == '/book/show/1'
 flash.message != null
 Book.count() == 1
 }
}

The method also includes an additional parameter that lets you pass a Map of Maps to configure a domain, which is useful for fixture-likemockDomain
data:

414

1.

2.

3.

mockDomain(Book, [
 [title: , pages: 1000],"The Stand"
 [title: , pages: 400],"The Shining"
 [title: , pages: 300]])"Along Came a Spider"

Testing Constraints

There are 3 types of validateable classes:

Domain classes

Classes which implement the traitValidateable

Command Objects which have been made validateable automatically

These are all easily testable in a unit test with no special configuration necessary as long as the test method is marked with or explicitly appliesTestFor
the using . See the examples below.GrailsUnitTestMixin TestMixin

// src/groovy/com/demo/MyValidateable.groovy
 com.demopackage

class MyValidateable grails.validation.Validateable {implements
 nameString
 ageInteger

 constraints = {static
 name matches: /[A-Z].*/
 age range: 1..99
 }
}

// grails-app/domain/com/demo/Person.groovy
 com.demopackage

class Person {
 nameString

 constraints = {static
 name matches: /[A-Z].*/
 }
}

415

// grails-app/controllers/com/demo/DemoController.groovy
 com.demopackage

class DemoController {

def addItems(MyCommandObject co) {
 (co.hasErrors()) {if
 render 'something went wrong'
 } {else
 render 'items have been added'
 }
 }
}

class MyCommandObject {
 numberOfItemsInteger

 constraints = {static
 numberOfItems range: 1..10
 }
}

// test/unit/com/demo/PersonSpec.groovy
 com.demopackage

 grails.test.mixin.TestForimport
 spock.lang.Specificationimport

@TestFor(Person)
class PersonSpec Specification {extends

void () {"Test that name must begin with an upper letter"case
 when: 'the name begins with a lower letter'
 def p = Person(name: 'jeff')new

then: 'validation should fail'
 !p.validate()

when: 'the name begins with an upper letter'case
 p = Person(name: 'Jeff')new

then: 'validation should pass'
 p.validate()
 }
}

416

// test/unit/com/demo/DemoControllerSpec.groovy
 com.demopackage

 grails.test.mixin.TestForimport
 spock.lang.Specificationimport

@TestFor(DemoController)
class DemoControllerSpec Specification {extends

void 'Test an invalid number of items'() {
 when:
 params.numberOfItems = 42
 controller.addItems()

then:
 response.text == 'something went wrong'
 }

void 'Test a valid number of items'() {
 when:
 params.numberOfItems = 8
 controller.addItems()

then:
 response.text == 'items have been added'
 }
}

417

// test/unit/com/demo/MyValidateableSpec.groovy
 com.demopackage

 grails.test.mixin.TestMixinimport
 grails.test.mixin.support.GrailsUnitTestMixinimport
 spock.lang.Specificationimport

@TestMixin(GrailsUnitTestMixin)
class MyValidateableSpec Specification {extends

void 'Test validate can be invoked in a unit test with no special configuration'() {
 when: 'an object is valid'
 def validateable = MyValidateable(name: 'Kirk', age: 47)new

then: 'validate() returns and there are no errors'true
 validateable.validate()
 !validateable.hasErrors()
 validateable.errors.errorCount == 0

when: 'an object is invalid'
 validateable.name = 'kirk'

then: 'validate() returns and the appropriate error is created'false
 !validateable.validate()
 validateable.hasErrors()
 validateable.errors.errorCount == 1
 validateable.errors['name'].code == 'matches.invalid'

when: 'the clearErrors() is called'
 validateable.clearErrors()

then: 'the errors are gone'
 !validateable.hasErrors()
 validateable.errors.errorCount == 0

when: 'the object is put back in a valid state'
 validateable.name = 'Kirk'

then: 'validate() returns and there are no errors'true
 validateable.validate()
 !validateable.hasErrors()
 validateable.errors.errorCount == 0
 }
}

418

// test/unit/com/demo/MyCommandObjectSpec.groovy
 com.demopackage

 grails.test.mixin.TestMixinimport
 grails.test.mixin.support.GrailsUnitTestMixinimport
 spock.lang.Specificationimport

@TestMixin(GrailsUnitTestMixin)
class MyCommandObjectSpec Specification {extends

void 'Test that numberOfItems must be between 1 and 10'() {
 when: 'numberOfItems is less than 1'
 def co = MyCommandObject()new
 co.numberOfItems = 0

then: 'validation fails'
 !co.validate()
 co.hasErrors()
 co.errors['numberOfItems'].code == 'range.toosmall'

when: 'numberOfItems is greater than 10'
 co.numberOfItems = 11

then: 'validation fails'
 !co.validate()
 co.hasErrors()
 co.errors['numberOfItems'].code == 'range.toobig'

when: 'numberOfItems is greater than 1'
 co.numberOfItems = 1

then: 'validation succeeds'
 co.validate()
 !co.hasErrors()

when: 'numberOfItems is greater than 10'
 co.numberOfItems = 10

then: 'validation succeeds'
 co.validate()
 !co.hasErrors()
 }
}

That's it for testing constraints. One final thing we would like to say is that testing the constraints in this way catches a common error: typos in the
"constraints" property name which is a mistake that is easy to make and equally easy to overlook. A unit test for your constraints will highlight the
problem straight away.

HibernateTestMixin Basics

 allows Hibernate 4 to be used in Grails unit tests. It uses a H2 in-memory database.HibernateTestMixin

419

import grails.test.mixin.TestMixin
 grails.test.mixin.gorm.Domainimport
 grails.test.mixin.hibernate.HibernateTestMixinimport
 spock.lang.Specificationimport

@Domain(Person)
@TestMixin(HibernateTestMixin)
class PersonSpec Specification {extends

void () {"Test count people"
 expect: "Test execute Hibernate count query"
 Person.count() == 0
 sessionFactory != null
 transactionManager != null
 hibernateSession != null
 }
}

This library dependency is required in build.gradle for adding support for .HibernateTestMixin

dependencies {
 testCompile 'org.grails:grails-datastore-test-support:4.0.4.RELEASE'
 }

HibernateTestMixin is only supported with hibernate4 plugin versions >= 4.3.8.1 .

dependencies {
 compile "org.grails.plugins:hibernate:4.3.8.1"
 }

Configuring domain classes for HibernateTestMixin tests

The annotation is used to configure the list of domain classes to configure for Hibernate sessionFactorygrails.test.mixin.gorm.Domain
instance that gets configured when the unit test runtime is initialized.

 annotations will be collected from several locations:Domain

420

the annotations on the test class

the package annotations in the package-info.java/package-info.groovy file in the package of the test class

each super class of the test class and their respective package annotations

the possible classSharedRuntime

 annotations can be shared by adding them as package annotations to package-info.java/package-info.groovy files or by adding them to a Domain
 class which has been added for the test.SharedRuntime

It's not possible to use DomainClassUnitTestMixin's annotation in HibernateTestMixin tests. Use the annotation in the place of inMock Domain Mock
HibernateTestMixin tests.

15.1.4 Unit Testing Filters
Unit testing filters is typically a matter of testing a controller where a filter is a mock collaborator. For example consider the following filters class:

class CancellingFilters {
 def filters = {
 all(controller: , action:) {"simple" "list"
 before = {
 redirect(controller:)"book"
 return false
 }
 }
 }
}

This filter interceptors the action of the controller and redirects to the controller. To test this filter you start off with a test thatlist simple book
targets the class and add the as a mock collaborator:SimpleController CancellingFilters

import grails.test.mixin.TestFor
 grails.test.mixin.Mockimport
 spock.lang.Specificationimport

@TestFor(SimpleController)
@Mock(CancellingFilters)
class SimpleControllerSpec Specification {extends

// ...

}

You can then implement a test that uses the method to wrap the call to an action in filter execution:withFilters

http://grails.github.io/grails-doc/3.0.x/api/grails/test/runtime/SharedRuntime.html
http://grails.github.io/grails-doc/3.0.x/api/grails/test/runtime/SharedRuntime.html

421

import grails.test.mixin.TestFor
 grails.test.mixin.Mockimport
 spock.lang.Specificationimport

@TestFor(SimpleController)
@Mock(CancellingFilters)
class SimpleControllerSpec Specification {extends

void () {"test list action is filtered"
 when:
 withFilters(action:) {"list"
 controller.list()
 }

then:
 response.redirectedUrl == '/book'
 }
}

Note that the parameter is required because it is unknown what the action to invoke is until the action is actually called. The action controller
parameter is optional and taken from the controller under test. If it is another controller you are testing then you can specify it:

withFilters(controller: ,action:) {"book" "list"
 controller.list()
}

15.1.5 Unit Testing URL Mappings

The Basics

Testing URL mappings can be done with the annotation testing a particular URL mappings class. For example to test the default URLTestFor
mappings you can do the following:

import com.demo.SimpleController
 grails.test.mixin.TestForimport
 grails.test.mixin.Mockimport
 spock.lang.Specificationimport

@TestFor(UrlMappings)
@Mock(SimpleController)
class UrlMappingsSpec Specification {extends
 // …
}

422

As you can see, any controller that is the target of a URL mapping that you're testing be added to the annotation.must @Mock

Note that since the default class is in the default package your test must also be in the default packageUrlMappings

With that done there are a number of useful methods that are defined by the forgrails.test.mixin.web.UrlMappingsUnitTestMixin
testing URL mappings. These include:

assertForwardUrlMapping - Asserts a URL mapping is forwarded for the given controller class (note that controller will need to be defined as
a mock collaborate for this to work)

assertReverseUrlMapping - Asserts that the given URL is produced when reverse mapping a link to a given controller and action

assertUrlMapping - Asserts a URL mapping is valid for the given URL. This combines the and assertForwardUrlMapping
 assertionsassertReverseUrlMapping

Asserting Forward URL Mappings

You use to assert that a given URL maps to a given controller. For example, consider the following URL mappings:assertForwardUrlMapping

static mappings = {
 (controller: , action:)"/actionOne" "simple" "action1"
 (controller: , action:)"/actionTwo" "simple" "action2"
}

The following test can be written to assert these URL mappings:

import com.demo.SimpleController
 grails.test.mixin.TestForimport
 grails.test.mixin.Mockimport
 spock.lang.Specificationimport

@TestFor(UrlMappings)
@Mock(SimpleController)
class UrlMappingsSpec Specification {extends

void () {"test forward mappings"
 expect:
 assertForwardUrlMapping(, controller: 'simple', action:)"/actionOne" "action1"
 assertForwardUrlMapping(, controller: 'simple', action:)"/actionTwo" "action2"
 }
}

Assert Reverse URL Mappings

423

You use to check that correct links are produced for your URL mapping when using the tag in GSP views. AnassertReverseUrlMapping link
example test is largely identical to the previous listing except you use instead of .assertReverseUrlMapping assertForwardUrlMapping
Note that you can combine these 2 assertions with . assertUrlMapping

15.1.6 Mocking Collaborators
The Spock Framework manual has a chapter on which also explains mocking collaborators. Interaction Based Testing

15.1.7 Mocking Codecs
The provides a method for mocking which may be invoked while a unit test is running.GrailsUnitTestMixin mockCodec custom codecs

mockCodec(MyCustomCodec)

Failing to mock a codec which is invoked while a unit test is running may result in a MissingMethodException.

15.1.8 Unit Test Metaprogramming
If runtime metaprogramming needs to be done in a unit test it needs to be done early in the process before the unit testing environment is fully initialized.
This should be done when the unit test class is being initialized. For a Spock based test this should be done in the method. For a JUnitsetupSpec()
test this should be done in a method marked with .@BeforeClass

package myapp

 grails.test.mixin.*import
 spock.lang.Specificationimport

@TestFor(SomeController)
class SomeControllerSpec Specification {extends

 def setupSpec() {
 SomeClass.metaClass.someMethod = { ->
 // something heredo
 }
 }

// …
}

http://spockframework.github.io/spock/docs/1.0/interaction_based_testing.html

424

package myapp

 grails.test.mixin.*import
 org.junit.*import

@TestFor(SomeController)
class SomeControllerTests {

@BeforeClass
 void metaProgramController() {static
 SomeClass.metaClass.someMethod = { ->
 // something heredo
 }
 }

// ...

}

15.2 Integration Testing
Integration tests differ from unit tests in that you have full access to the Grails environment within the test. You can create an integration test using the

 command:create-integration-test

$ grails create-integration-test Example

The above command will create a new integration test at the location .src/integration-test/groovy/<PACKAGE>/ExampleSpec.groovy

Grails uses the test environment for integration tests and loads the application prior to the first test run. All tests use the same application state.

Transactions

Integration tests run inside a database transaction by default, which is rolled back at the end of the each test. This means that data saved during a test is not
persisted to the database (which is shared across all tests). The default generated integration test template includes the annotation:Rollback

http://grails.github.io/grails-doc/3.0.x/api/grails/transaction/Rollback.html

425

import grails.test.mixin.integration.Integration
 grails.transaction.*import
 spock.lang.*import

@Integration
@Rollback
class Spec Specification {artifact.name extends

...

void () {"test something"
 expect:"fix me"
 == true false
 }
}

The annotation ensures that each test methods runs in a transaction that is rolled back. Generally this is desirable because you do not wantRollback
your tests depending on order or application state.

Using Spring's Rollback annotation

In Grails 3.0 tests rely on annotation to bind the session in integration tests. But with this approach the grails.transaction.Rollback setup()
and method in the test is run prior to the transaction starting hence you would see error whilesetupSpec() No Hibernate Session found
running integration test if sets up data and persists them as shown in the below sample:setup()

import grails.test.mixin.integration.Integration
 grails.transaction.*import
 spock.lang.*import

@Integration
@Rollback
class Spec Specification {artifact.name extends

void setup() {
 // Below line would a Hibernate session not found errorthrow
 Book(name: 'Grails in Action').save(flush:)new true
 }

void () {"test something"
 expect:
 Book.count() == 1
 }
}

To make sure the setup logic runs within the transaction you have to move it to be called from the method itself. Similar to usage of setupData()
method shown below:

426

import grails.test.mixin.integration.Integration
 grails.transaction.*import
 spock.lang.*import

@Integration
@Rollback
class Spec Specification {artifact.name extends

void setupData() {
 Book(name: 'Grails in Action').save(flush:)new true
 }

void () {"test something"
 given:
 setupData()

expect:
 Book.count() == 1
 }
}

Another approach could be to use Spring's instead.@Rollback

import grails.test.mixin.integration.Integration
 org.springframework.test.annotation.Rollbackimport
 spock.lang.*import

@Integration
@Rollback
class Spec Specification {artifact.name extends

void setup() {
 Book(name: 'Grails in Action').save(flush:)new true
 }

void () {"test something"
 expect:
 Book.count() == 1
 }
}

It isn't possible to make behave the same way as Spring's Rollback annotationgrails.transaction.Rollback
because transforms the byte code of the class, eliminating the need for a proxygrails.transaction.Rollback
(which Spring's version requires). This has the downside that you cannot implement it differently for different cases (as
Spring does for testing).

DirtiesContext

If you do have a series of tests that will share state you can remove the and the last test in the suite should feature the Rollback DirtiesContext
annotation which will shutdown the environment and restart it fresh (note that this will have an impact on test run times).

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/test/annotation/Rollback.html
http://docs.spring.io/spring/docs/4.0.x/javadoc-api/org/springframework/test/annotation/DirtiesContext.html

427

Autowiring

To obtain a reference to a bean you can use the annotation. For example:Autowired

…
 org.springframework.beans.factory.annotation.*import

@Integration
@Rollback
class Spec Specification {artifact.name extends

@Autowired
 ExampleService exampleService
 ...

void () {"Test example service"
 expect:
 exampleService.countExamples() == 0
 }
}

Testing Controllers

To integration test controllers it is recommended you use command to create a Geb functional test. See the following section oncreate-functional-test
functional testing for more information.

15.3 Functional Testing
Functional tests involve making HTTP requests against the running application and verifying the resultant behaviour. The functional testing phase differs
from the integration phase in that the Grails application is now listening and responding to actual HTTP requests. This is useful for end-to-end testing
scenarios, such as making REST calls against a JSON API.

Grails by default ships with support for writing functional tests using the . To create a functional test you can use the Geb framework
 command which will create a new functional test:create-functional-test

$ grails create-functional-test MyFunctional

The above command will create a new Spock spec called in the directory. TheMyFunctionalSpec.groovy src/integration-test/groovy
test is annotated with the annotation to indicate it is a integration test and extends the super class:Integration GebSpec

http://docs.spring.io/spring/docs/4.0.x/javadoc-api/org/springframework/beans/factory/annotation/Autowired.html
http://www.gebish.org
http://grails.github.io/grails-doc/3.0.x/api/grails/test/mixin/integration/Integration.html

428

@Integration
class HomeSpec GebSpec {extends

def setup() {
 }

def cleanup() {
 }

void () {"Test the home page renders correctly"
 when:"The home page is visited"
 go '/'

then:"The title is correct"
 $('title').text() == "Welcome to Grails"
 }
}

When the test is run the application container will be loaded up in the background and you can send requests to the running application using the Geb API.

Note that the application is only loaded once for the entire test run, so functional tests share the state of the application across the whole suite.

In addition the application is loaded in the JVM as the test, this means that the test has full access to the application state and can interact directly with
data services such as GORM to setup and cleanup test data.

The annotation supports an optional attribute which may be used to specify the application class to use for theIntegration applicationClass
functional test. The class must extend .GrailsAutoConfiguration

@Integration(applicationClass=com.demo.Application)
class HomeSpec GebSpec {extends

// ...

}

If the is not specified then the test runtime environment will attempt to locate the application class dynamically which can beapplicationClass
problematic in multiproject builds where multiple application classes may be present.

http://grails.github.io/grails-doc/3.0.x/api/grails/boot/config/GrailsAutoConfiguration.html

429

16 Internationalization
Grails supports Internationalization (i18n) out of the box by leveraging the underlying Spring MVC internationalization support. With Grails you are able
to customize the text that appears in a view based on the user's Locale. To quote the javadoc for the class:Locale

A Locale object represents a specific geographical, political, or cultural region. An operation that requires a Locale to perform its task is
called locale-sensitive and uses the Locale to tailor information for the user. For example, displaying a number is a locale-sensitive
operation--the number should be formatted according to the customs/conventions of the user's native country, region, or culture.

A Locale is made up of a and a . For example "en_US" is the code for US English, whilst "en_GB" is the code for Britishlanguage code country code
English.

16.1 Understanding Message Bundles
Now that you have an idea of locales, to use them in Grails you create message bundle file containing the different languages that you wish to render.
Message bundles in Grails are located inside the directory and are simple Java properties files.grails-app/i18n

Each bundle starts with the name by convention and ends with the locale. Grails ships with several message bundles for a whole range ofmessages
languages within the directory. For example:grails-app/i18n

messages.properties

messages_da.properties

messages_de.properties

messages_es.properties

messages_fr.properties

...

By default Grails looks in for messages unless the user has specified a locale. You can create your own message bundle bymessages.properties
simply creating a new properties file that ends with the locale you are interested. For example for British English. messages_en_GB.properties

16.2 Changing Locales
By default the user locale is detected from the incoming header. However, you can provide users the capability to switch locales byAccept-Language
simply passing a parameter called to Grails as a request parameter:lang

/book/list?lang=es

Grails will automatically switch the user's locale and store it in a cookie so subsequent requests will have the new header.

16.3 Reading Messages

Reading Messages in the View

http://docs.oracle.com/javase/6/docs/api/java/util/Locale.html
http://www.loc.gov/standards/iso639-2/php/English_list.php
http://www.iso.org/iso/country_codes/iso_3166_code_lists/country_names_and_code_elements.htm

430

The most common place that you need messages is inside the view. Use the tag for this:message

<g:message code= />"my.localized.content"

As long as you have a key in your (with appropriate locale suffix) such as the one below then Grails will look up themessages.properties
message:

my.localized.content=Hola, Me llamo John. Hoy es domingo.

Messages can also include arguments, for example:

<g:message code= args= />"my.localized.content" "${ ['Juan', 'lunes'] }"

The message declaration specifies positional parameters which are dynamically specified:

my.localized.content=Hola, Me llamo {0}. Hoy es {1}.

Reading Messages in Controllers and Tag Libraries

It's simple to read messages in a controller since you can invoke tags as methods:

def show() {
 def msg = message(code: , args: ['Juan', 'lunes'])"my.localized.content"
}

431

The same technique can be used in , but if your tag library uses a custom then you must prefix the call with :tag libraries namespace g.

def myTag = { attrs, body ->
 def msg = g.message(code: , args: ['Juan', 'lunes'])"my.localized.content"
}

16.4 Scaffolding and i18n
Grails templates for controllers and views are fully i18n-aware. The GSPs use the tag for labels, buttons etc. and controller scaffolding message flash
messages use i18n to resolve locale-specific messages.

The scaffolding includes locale specific labels for domain classes and domain fields. For example, if you have a domain class with a field:Book title

class Book {
 titleString
}

The scaffolding will use labels with the following keys:

book.label = Libro
book.title.label = Ttulo del libro

You can use this property pattern if you'd like or come up with one of your own. There is nothing special about the use of the word as part of thelabel
key other than it's the convention used by the scaffolding.

432

1.

2.

3.

4.

17 Security
Grails is no more or less secure than Java Servlets. However, Java servlets (and hence Grails) are extremely secure and largely immune to common buffer
overrun and malformed URL exploits due to the nature of the Java Virtual Machine underpinning the code.

Web security problems typically occur due to developer naivety or mistakes, and there is a little Grails can do to avoid common mistakes and make
writing secure applications easier to write.

What Grails Automatically Does

Grails has a few built in safety mechanisms by default.

All standard database access via domain objects is automatically SQL escaped to prevent SQL injection attacksGORM

The default templates HTML escape all data fields when displayedscaffolding

Grails link creating tags (, , , and others) all use appropriate escaping mechanisms to prevent code injectionlink form createLink createLinkTo

Grails provides to let you trivially escape data when rendered as HTML, JavaScript and URLs to prevent injection attacks here.codecs

17.1 Securing Against Attacks

SQL injection

Hibernate, which is the technology underlying GORM domain classes, automatically escapes data when committing to database so this is not an issue.
However it is still possible to write bad dynamic HQL code that uses unchecked request parameters. For example doing the following is vulnerable to
HQL injection attacks:

def vulnerable() {
 def books = Book.find(+ params.title +)"from Book as b where b.title ='" "'"
}

or the analogous call using a GString:

def vulnerable() {
 def books = Book.find()"from Book as b where b.title ='${params.title}'"
}

Do do this. Use named or positional parameters instead to pass in parameters:not

433

def safe() {
 def books = Book.find(,"from Book as b where b.title = ?"
 [params.title])
}

or

def safe() {
 def books = Book.find(,"from Book as b where b.title = :title"
 [title: params.title])
}

Phishing

This really a public relations issue in terms of avoiding hijacking of your branding and a declared communication policy with your customers. Customers
need to know how to identify valid emails.

XSS - cross-site scripting injection

It is important that your application verifies as much as possible that incoming requests were originated from your application and not from another site. It
is also important to ensure that all data values rendered into views are escaped correctly. For example when rendering to HTML or XHTML you must
ensure that people cannot maliciously inject JavaScript or other HTML into data or tags viewed by others.

Grails 2.3 and above include special support for automatically encoded data placed into GSP pages. See the documentation on Cross Site Scripting (XSS)
 for further information.prevention

You must also avoid the use of request parameters or data fields for determining the next URL to redirect the user to. If you use a successURL
parameter for example to determine where to redirect a user to after a successful login, attackers can imitate your login procedure using your own site, and
then redirect the user back to their own site once logged in, potentially allowing JavaScript code to then exploit the logged-in account on the site.

Cross-site request forgery

CSRF involves unauthorized commands being transmitted from a user that a website trusts. A typical example would be another website embedding a link
to perform an action on your website if the user is still authenticated.

The best way to decrease risk against these types of attacks is to use the attribute on your forms. See useToken Handling Duplicate Form Submissions
for more information on how to use it. An additional measure would be to not use remember-me cookies.

HTML/URL injection

This is where bad data is supplied such that when it is later used to create a link in a page, clicking it will not cause the expected behaviour, and may
redirect to another site or alter request parameters.

434

HTML/URL injection is easily handled with the supplied by Grails, and the tag libraries supplied by Grails all use wherecodecs encodeAsURL
appropriate. If you create your own tags that generate URLs you will need to be mindful of doing this too.

Denial of service

Load balancers and other appliances are more likely to be useful here, but there are also issues relating to excessive queries for example where a link is
created by an attacker to set the maximum value of a result set so that a query could exceed the memory limits of the server or slow the system down. The
solution here is to always sanitize request parameters before passing them to dynamic finders or other GORM query methods:

int limit = 100
def safeMax = .min(params.max?.toInteger() ?: limit, limit) // limit to 100 resultsMath

 Book.list(max:safeMax)return

Guessable IDs

Many applications use the last part of the URL as an "id" of some object to retrieve from GORM or elsewhere. Especially in the case of GORM these are
easily guessable as they are typically sequential integers.

Therefore you must assert that the requesting user is allowed to view the object with the requested id before returning the response to the user.

Not doing this is "security through obscurity" which is inevitably breached, just like having a default password of "letmein" and so on.

You must assume that every unprotected URL is publicly accessible one way or another.

17.2 Cross Site Scripting (XSS) Prevention
Cross Site Scripting (XSS) attacks are a common attack vector for web applications. They typically involve submitting HTML or Javascript code in a
form such that when that code is displayed, the browser does something nasty. It could be as simple as popping up an alert box, or it could be much worse.
The solution is to escape all untrusted user input when it is displayed in a page. For example,

<script>alert('Got ya!');</script>

will become

<script>alert('Got ya!');</script>

when rendered, nullifying the effects of the malicious input.

435

By default, Grails plays it safe and escapes all content in expressions in GSPs. All the standard GSP tags are also safe by default, escaping any${}
relevant attribute values.

So what happens when you want to stop Grails from escaping some content? There are valid use cases for putting HTML into the database and rendering
it as-is, as long as that content is . In such cases, you can tell Grails that the content is safe as should be rendered raw, i.e. without any escaping:trusted

<section>${raw(page.content)}</section>

The method you see here is available from controllers, tag libraries and GSP pages.raw()

XSS prevention is hard and requires a lot of developer attention

Although Grails plays it safe by default, that is no guarantee that your application will be invulnerable to an XSS-style
attack. Such an attack is less likely to succeed than would otherwise be the case, but developers should always be conscious
of potential attack vectors and attempt to uncover vulnerabilities in the application during testing. It's also easy to switch to
an unsafe default, thereby increasing the risk of a vulnerability being introduced.

There are more details about the XSS in and . Types of XSS are: , OWASP - XSS prevention rules OWASP - Types of Cross-Site Scripting Stored XSS
 and . is coming more important because of the popularity of Javascript client side templatingReflected XSS DOM based XSS DOM based XSS prevention

and Single Page Apps.

Grails codecs are mainly for preventing stored and reflected XSS type of attacks. Grails 2.4 includes HTMLJS codec that assists in preventing some DOM
based XSS attacks.

It's difficult to make a solution that works for everyone, and so Grails provides a lot of flexibility with regard to fine-tuning how escaping works, allowing
you to keep most of your application safe while switching off default escaping or changing the codec used for pages, tags, page fragments, and more.

Configuration

It is recommended that you review the configuration of a newly created Grails application to garner an understanding of XSS prevention works in Grails.

GSP features the ability to automatically HTML encode GSP expressions, and as of Grails 2.3 this is the default configuration. The default configuration
(found in) for a newly created Grails application can be seen below:application.yml

grails:
 views:
 gsp:
 encoding: UTF-8
 htmlcodec: xml # use xml escaping instead of HTML4 escaping
 codecs:
 expression: html # escapes values inside ${}
 scriptlets: html # escapes output from scriptlets in GSPs
 taglib: none # escapes output from taglibs
 staticparts: none # escapes output from template partsstatic

https://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%29_Prevention_Cheat_Sheet#XSS_Prevention_Rules
https://www.owasp.org/index.php/Types_of_Cross-Site_Scripting
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)#Stored_XSS_Attacks
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)#Reflected_XSS_Attacks
https://www.owasp.org/index.php/DOM_Based_XSS
https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet

436

GSP features several codecs that it uses when writing the page to the response. The codecs are configured in the block and are described below:codecs

expression - The expression codec is used to encode any code found within ${..} expressions. The default for newly created application is html
encoding.

scriptlet - Used for output from GSP scriplets (<% %>, <%= %> blocks). The default for newly created applications is encodinghtml

taglib - Used to encode output from GSP tag libraries. The default is for new applications, as typically it is the responsibility of the tagnone
author to define the encoding of a given tag and by specifying Grails remains backwards compatible with older tag libraries.none

staticparts - Used to encode the raw markup output by a GSP page. The default is .none

Double Encoding Prevention

Versions of Grails prior to 2.3, included the ability to set the default codec to , however enabling this setting sometimes proved problematic whenhtml
using existing plugins due to encoding being applied twice (once by the codec and then again if the plugin manually called).html encodeAsHTML

Grails 2.3 includes double encoding prevention so that when an expression is evaluated, it will not encode if the data has already been encoded (Example
).${foo.encodeAsHTML()}

Raw Output

If you are 100% sure that the value you wish to present on the page has not been received from user input, and you do not wish the value to be encoded
then you can use the method:raw

${raw(book.title)}

The 'raw' method is available in tag libraries, controllers and GSP pages.

Per Plugin Encoding

Grails also features the ability to control the codecs used on a per plugin basis. For example if you have a plugin named installed, then placing thefoo
following configuration in your will disable encoding for only the pluginapplication.groovy foo

foo.grails.views.gsp.codecs.expression = "none"

Per Page Encoding

You can also control the various codecs used to render a GSP page on a per page basis, using a page directive:

437

<%@page expressionCodec= %>"none"

Per Tag Library Encoding

Each tag library created has the opportunity to specify a default codec used to encode output from the tag library using the "defaultEncodeAs" property:

static defaultEncodeAs = 'html'

Encoding can also be specified on a per tag basis using "encodeAsForTags":

static encodeAsForTags = [tagName: 'raw']

Context Sensitive Encoding Switching

Certain tags require certain encodings and Grails features the ability to enable a codec only a certain part of a tag's execution using the "withCodec"
method. Consider for example the "<g:javascript>"" tag which allows you to embed JavaScript code in the page. This tag requires JavaScript encoding,
not HTML coding for the execution of the body of the tag (but not for the markup that is output):

out.println '<script type= >'"text/javascript"
 withCodec() {"JavaScript"
 out << body()
 }
 out.println()
 out.println '</script>'

Forced Encoding for Tags

If a tag specifies a default encoding that differs from your requirements you can force the encoding for any tag by passing the optional 'encodeAs'
attribute:

438

<g:message code= encodeAs= />"foo.bar" "JavaScript"

Default Encoding for All Output

The default configuration for new applications is fine for most use cases, and backwards compatible with existing plugins and tag libraries. However, you
can also make your application even more secure by configuring Grails to always encode all output at the end of a response. This is done using the

 configuration in :filteringCodecForContentType application.groovy

grails.views.gsp.filteringCodecForContentType.'text/html' = 'html'

Note that, if activated, the codec typically needs to be set to so that static markup is not encoded:staticparts raw

codecs {
 expression = 'html' // escapes values inside ${}
 scriptlet = 'html' // escapes output from scriptlets in GSPs
 taglib = 'none' // escapes output from taglibs
 staticparts = 'raw' // escapes output from template partsstatic
 }

17.3 Encoding and Decoding Objects
Grails supports the concept of dynamic encode/decode methods. A set of standard codecs are bundled with Grails. Grails also supports a simple
mechanism for developers to contribute their own codecs that will be recognized at runtime.

Codec Classes

A Grails codec class is one that may contain an encode closure, a decode closure or both. When a Grails application starts up the Grails framework
dynamically loads codecs from the directory.grails-app/utils/

The framework looks under for class names that end with the convention . For example one of the standard codecs thatgrails-app/utils/ Codec
ships with Grails is .HTMLCodec

If a codec contains an closure Grails will create a dynamic method and add that method to the class with a name representingencode encode Object
the codec that defined the encode closure. For example, the class defines an closure, so Grails attaches it with the name HTMLCodec encode

.encodeAsHTML

439

The and classes also define a closure, so Grails attaches those with the names and HTMLCodec URLCodec decode decodeHTML decodeURL
respectively. Dynamic codec methods may be invoked from anywhere in a Grails application. For example, consider a case where a report contains a
property called 'description' which may contain special characters that must be escaped to be presented in an HTML document. One way to deal with that
in a GSP is to encode the description property using the dynamic encode method as shown below:

${report.description.encodeAsHTML()}

Decoding is performed using syntax.value.decodeHTML()

Encoder and Decoder interfaces for staticly compiled code

A preferred way to use codecs is to use the codecLookup bean to get hold of and instances .Encoder Decoder

package org.grails.encoder;

 CodecLookup {public interface
 Encoder lookupEncoder(codecName);public String
 Decoder lookupDecoder(codecName);public String
}

example of using and interfaceCodecLookup Encoder

import org.grails.encoder.CodecLookup

class CustomTagLib {
 CodecLookup codecLookup

def myTag = { Map attrs, body ->
 out << codecLookup.lookupEncoder('HTML').encode(attrs.something)
 }
}

Standard Codecs

HTMLCodec

This codec performs HTML escaping and unescaping, so that values can be rendered safely in an HTML page without creating any HTML tags or
damaging the page layout. For example, given a value "Don't you know that 2 > 1?" you wouldn't be able to show this safely within an HTML page
because the > will look like it closes a tag, which is especially bad if you render this data within an attribute, such as the value attribute of an input field.

Example of usage:

440

<input name= value= />"comment.message" "${comment.message.encodeAsHTML()}"

Note that the HTML encoding does not re-encode apostrophe/single quote so you must use double quotes on attribute
values to avoid text with apostrophes affecting your page.

HTMLCodec defaults to HTML4 style escaping (legacy HTMLCodec implementation in Grails versions before 2.3.0) which escapes non-ascii characters.

You can use plain XML escaping instead of HTML4 escaping by setting this config property in :application.groovy

grails.views.gsp.htmlcodec = 'xml'

XMLCodec

This codec performs XML escaping and unescaping. It escapes & , < , > , " , ' , \ , @ , ` , non breaking space (\u00a0), line separator (\u2028) and
paragraph separator (\u2029).

HTMLJSCodec

This codec performs HTML and JS encoding. It is used for preventing some DOM-XSS vulnerabilities. See OWASP - DOM based XSS Prevention Cheat
 for guidelines of preventing DOM based XSS attacks.Sheet

URLCodec

URL encoding is required when creating URLs in links or form actions, or any time data is used to create a URL. It prevents illegal characters from
getting into the URL and changing its meaning, for example "Apple & Blackberry" is not going to work well as a parameter in a GET request as the
ampersand will break parameter parsing.

Example of usage:

"/mycontroller/find?searchKey=${lastSearch.encodeAsURL()}"
Repeat last search

Base64Codec

Performs Base64 encode/decode functions. Example of usage:

https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet#RULE_.231_-_HTML_Escape_then_JavaScript_Escape_Before_Inserting_Untrusted_Data_into_HTML_Subcontext_within_the_Execution_Context
https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet#RULE_.231_-_HTML_Escape_then_JavaScript_Escape_Before_Inserting_Untrusted_Data_into_HTML_Subcontext_within_the_Execution_Context

441

Your registration code is: ${user.registrationCode.encodeAsBase64()}

JavaScriptCodec

Escapes Strings so they can be used as valid JavaScript strings. For example:

Element.update('${elementId}',
 '${render(template:).encodeAsJavaScript()}')"/common/message"

HexCodec

Encodes byte arrays or lists of integers to lowercase hexadecimal strings, and can decode hexadecimal strings into byte arrays. For example:

Selected colour: #${[255,127,255].encodeAsHex()}

MD5Codec

Uses the MD5 algorithm to digest byte arrays or lists of integers, or the bytes of a string (in default system encoding), as a lowercase hexadecimal string.
Example of usage:

Your API Key: ${user.uniqueID.encodeAsMD5()}

MD5BytesCodec

Uses the MD5 algorithm to digest byte arrays or lists of integers, or the bytes of a string (in default system encoding), as a byte array. Example of usage:

byte[] passwordHash = params.password.encodeAsMD5Bytes()

442

SHA1Codec

Uses the SHA1 algorithm to digest byte arrays or lists of integers, or the bytes of a string (in default system encoding), as a lowercase hexadecimal string.
Example of usage:

Your API Key: ${user.uniqueID.encodeAsSHA1()}

SHA1BytesCodec

Uses the SHA1 algorithm to digest byte arrays or lists of integers, or the bytes of a string (in default system encoding), as a byte array. Example of usage:

byte[] passwordHash = params.password.encodeAsSHA1Bytes()

SHA256Codec

Uses the SHA256 algorithm to digest byte arrays or lists of integers, or the bytes of a string (in default system encoding), as a lowercase hexadecimal
string. Example of usage:

Your API Key: ${user.uniqueID.encodeAsSHA256()}

SHA256BytesCodec

Uses the SHA256 algorithm to digest byte arrays or lists of integers, or the bytes of a string (in default system encoding), as a byte array. Example of
usage:

byte[] passwordHash = params.password.encodeAsSHA256Bytes()

Custom Codecs

443

Applications may define their own codecs and Grails will load them along with the standard codecs. A custom codec class must be defined in the
 directory and the class name must end with . The codec may contain a closure, a grails-app/utils/ Codec static encode static decode

closure or both. The closure must accept a single argument which will be the object that the dynamic method was invoked on. For Example:

class PigLatinCodec {
 encode = { str ->static
 // convert the string to pig latin and the resultreturn
 }
}

With the above codec in place an application could do something like this:

${lastName.encodeAsPigLatin()}

17.4 Authentication
Grails has no default mechanism for authentication as it is possible to implement authentication in many different ways. It is however, easy to implement
a simple authentication mechanism using . This is sufficient for simple use cases but it's highly preferable to use an established securityinterceptors
framework, for example by using the or the plugin.Spring Security Shiro

Interceptors let you apply authentication across all controllers or across a URI space. For example you can create a new set of filters in a class called
 by running:grails-app/controllers/SecurityInterceptor.groovy

grails create-interceptor security

and implement your interception logic there:

444

class SecurityInterceptor {

SecurityInterceptor() {
 matchAll()
 .except(controller:'user', action:'login')
 }

 before() {boolean
 (!session.user && actionName !=) {if "login"
 redirect(controller: , action:)"user" "login"
 return false
 }
 return true
 }

}

Here the interceptor intercepts execution all actions except are executed, and if there is no user in the session then redirect to the before login login
action.

The action itself is simple too:login

def login() {
 (request.get) {if
 // render the login viewreturn
 }

def u = User.findByLogin(params.login)
 (u) {if
 (u.password == params.password) {if
 session.user = u
 redirect(action:)"home"
 }
 {else
 render(view: , model: [message:])"login" "Password incorrect"
 }
 }
 {else
 render(view: , model: [message:])"login" "User not found"
 }
}

17.5 Security Plugins
If you need more advanced functionality beyond simple authentication such as authorization, roles etc. then you should consider using one of the available
security plugins.

17.5.1 Spring Security
The Spring Security plugins are built on the project which provides a flexible, extensible framework for building all sorts ofSpring Security
authentication and authorization schemes. The plugins are modular so you can install just the functionality that you need for your application. The Spring
Security plugins are the official security plugins for Grails and are actively maintained and supported.

http://static.springsource.org/spring-security/site/

445

There is a which supports form-based authentication, encrypted/salted passwords, HTTP Basic authentication, etc. and secondary dependentCore plugin
plugins provide alternate functionality such as , , , , OpenID authentication ACL support single sign-on with Jasig CAS LDAP authentication Kerberos

, and a plugin providing and security workflows.authentication user interface extensions

See the for basic information and the for detailed information. Core plugin page user guide

17.5.2 Shiro
 is a Java POJO-oriented security framework that provides a default domain model that models realms, users, roles and permissions. With Shiro youShiro

extend a controller base class called in each controller you want secured and then provide an block to setup theJsecAuthBase accessControl
roles. An example below:

class ExampleController JsecAuthBase {extends
 accessControl = {static
 // All actions require the 'Observer' role.
 role(name: 'Observer')

// The 'edit' action requires the 'Administrator' role.
 role(name: 'Administrator', action: 'edit')

// Alternatively, several actions can be specified.
 role(name: 'Administrator', only: ['create', 'edit', 'save', 'update'])
 }
 …
}

For more information on the Shiro plugin refer to the . documentation

http://grails.org/plugin/spring-security-core
http://grails.org/plugin/spring-security-openid
http://grails.org/plugin/spring-security-acl
http://grails.org/plugin/spring-security-cas
http://grails.org/plugin/spring-security-ldap
http://grails.org/plugin/spring-security-kerberos
http://grails.org/plugin/spring-security-kerberos
http://grails.org/plugin/spring-security-ui
http://grails.org/plugin/spring-security-core
http://burtbeckwith.github.com/grails-spring-security-core/
http://shiro.apache.org/
http://grails.org/plugin/shiro

446

18 Plugins
Grails is first and foremost a web application framework, but it is also a platform. By exposing a number of extension points that let you extend anything
from the command line interface to the runtime configuration engine, Grails can be customised to suit almost any needs. To hook into this platform, all
you need to do is create a plugin.

Extending the platform may sound complicated, but plugins can range from trivially simple to incredibly powerful. If you know how to build a Grails
application, you'll know how to create a plugin for or some static resources. sharing a data model

18.1 Creating and Installing Plugins

Creating Plugins

Creating a Grails plugin is a simple matter of running the command:

grails create-plugin [PLUGIN NAME]

This will create a plugin project for the name you specify. For example running would create a new plugingrails create-plugin example
project called .example

In Grails 3.0 you should consider whether the plugin you create requires a web environment or whether the plugin can be used with other profiles. If your
plugin does not require a web environment then use the "plugin" profile instead of the "web-plugin" profile:

grails create-plugin [PLUGIN NAME] --profile=plugin

Make sure the plugin name does not contain more than one capital letter in a row, or it won't work. Camel case is fine, though.

The structure of a Grails plugin is very nearly the same as a Grails application project's except that in the directory under the pluginsrc/main/groovy
package structure you will find a plugin descriptor class (a class that ends in "GrailsPlugin").

Being a regular Grails project has a number of benefits in that you can immediately test your plugin by running (if the plugin targets the "web" profile):

grails run-app

447

Plugin projects don't provide an index.gsp by default since most plugins don't need it. So, if you try to view the plugin
running in a browser right after creating it, you will receive a page not found error. You can easily create a

 for your plugin if you'd like.grails-app/views/index.gsp

The plugin descriptor name ends with the convention and is found in the root of the plugin project. For example:GrailsPlugin

class ExampleGrailsPlugin {
 …
}

All plugins must have this class under the directory, otherwise they are not regarded as a plugin. The plugin class defines metadatasrc/main/groovy
about the plugin, and optionally various hooks into plugin extension points (covered shortly).

You can also provide additional information about your plugin using several special properties:

title - short one-sentence description of your plugin

grailsVersion - The version range of Grails that the plugin supports. eg. "1.2 > *" (indicating 1.2 or higher)

author - plugin author's name

authorEmail - plugin author's contact e-mail

description - full multi-line description of plugin's features

documentation - URL of the plugin's documentation

license - License of the plugin

issueManagement - Issue Tracker of the plugin

scm - Source code management location of the plugin

Here is an example from the :Quartz Grails plugin

http://grails.org/plugin/quartz

448

class QuartzGrailsPlugin {
 def grailsVersion = "1.1 > *"
 def author = "Sergey Nebolsin"
 def authorEmail = "nebolsin@gmail.com"
 def title = "Quartz Plugin"
 def description = '''\
The Quartz plugin allows your Grails application to schedule jobs\
to be executed using a specified interval or cron expression. The\
underlying system uses the Quartz Enterprise Job Scheduler configured\
via Spring, but is made simpler by the coding by convention paradigm.\
'''
 def documentation = "http://grails.org/plugin/quartz"

…
}

Installing Local Plugins

To make your plugin available for use in a Grails application run the command:install

grails install

This will install the plugin into your local Maven cache. Then to use the plugin within an application declare a dependency on the plugin in your
 file:build.gradle

compile "org.grails.plugins:quartz:0.1"

In Grails 2.x plugins were packaged as ZIP files, however in Grails 3.x plugins are simple JAR files that can be added to
the classpath of the IDE.

Plugins and Multi-Project Builds

If you wish to setup a plugin as part of a multi project build then follow these steps.

Step 1: Create the application and the plugin

Using the command create an application and a plugin:grails

449

$ grails create-app myapp
$ grails create-plugin myplugin

Step 2: Create a settings.gradle file

In the same directory create a file with the following contents:settings.gradle

include , "myapp" "myplugin"

The directory structure should be as follows:

PROJECT_DIR
 - settings.gradle
 - myapp
 - build.gradle
 - myplugin
 - build.gradle

Step 3: Declare a project dependency on the plugin

Within the of the application declare a dependency on the plugin within the block:build.gradle plugins

grails {
 plugins {
 compile project(':myplugin')
 }
}

You can also declare the dependency within the block, however you will not get subproject reloading ifdependencies
you do this!

Step 4: Run the application

450

Now run the application using the command from the root of the application directory, you can use the flag to see thegrails run-app verbose
Gradle output:

$ cd myapp
$ grails run-app -verbose

You will notice from the Gradle output that plugins sources are built and placed on the classpath of your application:

:myplugin:compileAstJava UP-TO-DATE
:myplugin:compileAstGroovy UP-TO-DATE
:myplugin:processAstResources UP-TO-DATE
:myplugin:astClasses UP-TO-DATE
:myplugin:compileJava UP-TO-DATE
:myplugin:configScript UP-TO-DATE
:myplugin:compileGroovy
:myplugin:copyAssets UP-TO-DATE
:myplugin:copyCommands UP-TO-DATE
:myplugin:copyTemplates UP-TO-DATE
:myplugin:processResources
:myapp:compileJava UP-TO-DATE
:myapp:compileGroovy
:myapp:processResources UP-TO-DATE
:myapp:classes
:myapp:findMainClass
:myapp:bootRun
Grails application running at http://localhost:8080 in environment: development

Notes on excluded Artefacts

Although the command creates certain files for you so that the plugin can be run as a Grails application, not all of these files are includedcreate-plugin
when packaging a plugin. The following is a list of artefacts created, but not included by :package-plugin

grails-app/build.gradle (although it is used to generate)dependencies.groovy

grails-app/conf/application.yml (renamed to plugin.yml)

grails-app/conf/spring/resources.groovy

grails-app/conf/logback.groovy

Everything within /src/test/**

SCM management files within and **/.svn/** **/CVS/**

Customizing the plugin contents

When developing a plugin you may create test classes and sources that are used during the development and testing of the plugin but should not be
exported to the application.

451

To exclude test sources you need to modify the property of the plugin descriptor AND exclude the resources inside your pluginExcludes
 file. For example say you have some classes under the package that are in your plugin source tree but should not bebuild.gradle com.demo

packaged in the application. In your plugin descriptor you should exclude these:

// resources that should be loaded by the plugin once installed in the application
 def pluginExcludes = [
 '**/com/demo/**'
]

And in your you should exclude the compiled classes from the JAR file:build.gradle

jar {
 exclude "com/demo/**/**"
}

Inline Plugins in Grails 3.0

In Grails 2.x it was possible to specify inline plugins in , in Grails 3.x this functionality has been replaced by Gradle's multi-project buildBuildConfig
feature.

To set up a multi project build create an appliation and a plugin in a parent directory:

$ grails create-app myapp
$ grails create-plugin myplugin

Then create a file in the parent directory specifying the location of your application and plugin:settings.gradle

include 'myapp', 'myplugin'

Finally add a dependency in your application's on the plugin:build.gradle

452

compile project(':myplugin')

Using this technique you have achieved the equivalent of inline plugins from Grails 2.x.

18.2 Plugin Repositories

Distributing Plugins in the Grails Central Plugin Repository

The preferred way to distribute plugin is to publish to the official Grails Central Plugin Repository. This will make your plugin visible to the list-plugins
command:

grails list-plugins

which lists all plugins that are in the central repository. Your plugin will also be available to the command:plugin-info

grails plugin-info [plugin-name]

which prints extra information about it, such as its description, who wrote, etc.

If you have created a Grails plugin and want it to be hosted in the central repository, you'll find instructions for getting an
account on the website.plugin portal

18.3 Providing Basic Artefacts

Add Command Line Commands

A plugin can add new commands to the Grails 3.0 interactive shell in one of two ways. First, using the you can create a code generationcreate-script
script which will become available to the application. The command will create the script in the directory:create-script src/main/scripts

http://grails.org/plugins

453

+ src/main/scripts <-- additional scripts here
 + grails-app
 + controllers
 + services
 + etc.

Code generation scripts can be used to create artefacts within the project tree and automate interactions with Gradle.

If you want to create a new shell command that interacts with a loaded Grails application instance then you should use the create-command
command:

$ grails create-command MyExampleCommand

This will create a file called that extends :grails-app/commands/PACKAGE_PATH/MyExampleCommand.groovy ApplicationCommand

import grails.dev.commands.*

class MyExampleCommand ApplicationCommand {implements

 handle(ExecutionContext ctx) {boolean
 println "Hello World"
 return true
 }
}

An has access to the instance and is subject to autowiring like any other Spring bean.ApplicationCommand GrailsApplication

You can also inform Grails to skip the execution of files with a simple property in your command:Bootstrap.groovy

class MyExampleCommand ApplicationCommand {implements

 skipBootstrap = boolean true

 handle(ExecutionContext ctx) {boolean
 …
 }
}

http://grails.github.io/grails-doc/3.0.x/api/grails/dev/commands/ApplicationCommand.html

454

For each present Grails will create a shell command and a Gradle task to invoke the . In the aboveApplicationCommand ApplicationCommand
example you can invoke the class using either:MyExampleCommand

$ grails my-example

Or

$ gradle myExample

The Grails version is all lower case hyphen separated and excludes the "Command" suffix.

The main difference between code generation scripts and instances is that the latter has full access to the Grails applicationApplicationCommand
state and hence can be used to perform tasks that interactive with the database, call into GORM etc.

In Grails 2.x Gant scripts could be used to perform both these tasks, in Grails 3.x code generation and interacting with runtime application state has been
cleanly separated.

Adding a new grails-app artifact (Controller, Tag Library, Service, etc.)

A plugin can add new artifacts by creating the relevant file within the tree.grails-app

+ grails-app
 + controllers <-- additional controllers here
 + services <-- additional services here
 + etc. <-- additional XXX here

Providing Views, Templates and View resolution

When a plugin provides a controller it may also provide default views to be rendered. This is an excellent way to modularize your application through
plugins. Grails' view resolution mechanism will first look for the view in the application it is installed into and if that fails will attempt to look for the view
within the plugin. This means that you can override views provided by a plugin by creating corresponding GSPs in the application's

 directory.grails-app/views

For example, consider a controller called that's provided by an 'amazon' plugin. If the action being executed is , Grails will firstBookController list
look for a view called then if that fails it will look for the same view relative to the plugin.grails-app/views/book/list.gsp

However if the view uses templates that are also provided by the plugin then the following syntax may be necessary:

455

<g:render template= plugin= />"fooTemplate" "amazon"

Note the usage of the attribute, which contains the name of the plugin where the template resides. If this is not specified then Grails will look forplugin
the template relative to the application.

Excluded Artefacts

By default Grails excludes the following files during the packaging process:

grails-app/conf/logback.groovy

grails-app/conf/application.yml (renamed to)plugin.yml

grails-app/conf/spring/resources.groovy

Everything within /src/test/**

SCM management files within and **/.svn/** **/CVS/**

In addition, the default file is excluded to avoid naming conflicts, however you are free to add a UrlMappings definition underUrlMappings.groovy
a different name which be included. For example a file called is fine.will grails-app/controllers/BlogUrlMappings.groovy

The list of excludes is extensible with the property:pluginExcludes

// resources that are excluded from plugin packaging
def pluginExcludes = [
 "grails-app/views/error.gsp"
]

This is useful for example to include demo or test resources in the plugin repository, but not include them in the final distribution.

18.4 Evaluating Conventions
Before looking at providing runtime configuration based on conventions you first need to understand how to evaluate those conventions from a plugin.
Every plugin has an implicit variable which is an instance of the interface.application GrailsApplication

The interface provides methods to evaluate the conventions within the project and internally stores references to all artifactGrailsApplication
classes within your application.

Artifacts implement the interface, which represents a Grails resource such as a controller or a tag library. For example to get all GrailsClass
 instances you can do:GrailsClass

http://grails.github.io/grails-doc/3.0.x/api/grails/core/GrailsApplication.html
http://grails.github.io/grails-doc/3.0.x/api/grails/core/GrailsClass.html

456

for (grailsClass in application.allClasses) {
 println grailsClass.name
}

 has a few "magic" properties to narrow the type of artefact you are interested in. For example to access controllers you can use:GrailsApplication

for (controllerClass in application.controllerClasses) {
 println controllerClass.name
}

The dynamic method conventions are as follows:

*Classes - Retrieves all the classes for a particular artefact name. For example .application.controllerClasses

get*Class - Retrieves a named class for a part icular artefact . For example
application.getControllerClass("PersonController")

is*Class - Returns if the given class is of the given artefact type. For example true
application.isControllerClass(PersonController)

The interface has a number of useful methods that let you further evaluate and work with the conventions. These include:GrailsClass

getPropertyValue - Gets the initial value of the given property on the class

hasProperty - Returns if the class has the specified propertytrue

newInstance - Creates a new instance of this class.

getName - Returns the logical name of the class in the application without the trailing convention part if applicable

getShortName - Returns the short name of the class without package prefix

getFullName - Returns the full name of the class in the application with the trailing convention part and with the package name

getPropertyName - Returns the name of the class as a property name

getLogicalPropertyName - Returns the logical property name of the class in the application without the trailing convention part if applicable

getNaturalName - Returns the name of the property in natural terms (e.g. 'lastName' becomes 'Last Name')

getPackageName - Returns the package name

For a full reference refer to the . javadoc API

18.5 Hooking into Runtime Configuration
Grails provides a number of hooks to leverage the different parts of the system and perform runtime configuration by convention.

http://grails.github.io/grails-doc/3.0.x/api/grails/core/GrailsClass.html

457

Hooking into the Grails Spring configuration

First, you can hook in Grails runtime configuration overriding the method from the class and returning a closure that definesdoWithSpring Plugin
additional beans. For example the following snippet is from one of the core Grails plugins that provides support:i18n

import org.springframework.web.servlet.i18n.CookieLocaleResolver
 org.springframework.web.servlet.i18n.LocaleChangeInterceptorimport
 org.springframework.context.support.ReloadableResourceBundleMessageSourceimport
 grails.plugins.*import

class I18nGrailsPlugin Plugin {extends

def version = "0.1"

Closure doWithSpring() {{->
 messageSource(ReloadableResourceBundleMessageSource) {
 basename = "WEB-INF/grails-app/i18n/messages"
 }
 localeChangeInterceptor(LocaleChangeInterceptor) {
 paramName = "lang"
 }
 localeResolver(CookieLocaleResolver)
 }}
}

This plugin configures the Grails bean and a couple of other beans to manage Locale resolution and switching. It using the messageSource Spring
 syntax to do so.Bean Builder

Customizing the Servlet Environment

In previous versions of Grails it was possible to dynamically modify the generated . In Grails 3.x there is no file and it is not possibleweb.xml web.xml
to programmatically modify the file anymore.web.xml

However, it is possible to perform the most commons tasks of modifying the Servlet environment in Grails 3.x.

Adding New Servlets

If you want to add a new Servlet instance the simplest way is simply to define a new Spring bean in the method:doWithSpring

Closure doWithSpring() {{->
 myServlet(MyServlet)
}}

If you need to customize the servlet you can use Spring Boot's :ServletRegistrationBean

http://grails.github.io/grails-doc/3.0.x/api/grails/plugins/Plugin.html
http://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/context/embedded/ServletRegistrationBean.html

458

Closure doWithSpring() {{->
 myServlet(ServletRegistrationBean, MyServlet(),) {new "/myServlet/*"
 loadOnStartup = 2
 }
}}

Adding New Servlet Filters

Just like Servlets, the simplest way to configure a new filter is to simply define a Spring bean:

Closure doWithSpring() {{->
 myFilter(MyFilter)
}}

However, if you want to control the order of filter registrations you will need to use Spring Boot's :FilterRegistrationBean

myFilter(FilterRegistrationBean) {
 filter = bean(MyFilter)
 urlPatterns = ['/*']
 order = Ordered.HIGHEST_PRECEDENCE
}

Grails' internal registered filters (, etc.) are defined byGrailsWebRequestFilter HiddenHttpMethodFilter
incrementing by 10 thus allowing several filters to be inserted before or between Grails' filters.HIGHEST_PRECEDENCE

Doing Post Initialisation Configuration

Sometimes it is useful to be able do some runtime configuration after the Spring has been built. In this case you can define a ApplicationContext
 closure property.doWithApplicationContext

http://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/context/embedded/FilterRegistrationBean.html
http://docs.spring.io/spring/docs/4.0.x/javadoc-api/org/springframework/context/ApplicationContext.html

459

class SimplePlugin Plugin{extends

def name = "simple"
 def version = "1.1"

@Override
 void doWithApplicationContext() {
 def sessionFactory = applicationContext.sessionFactory
 // something here with session factorydo
 }
}

18.6 Adding Methods at Compile Time
Grails 3.0 makes it easy to add new traits to existing artefact types from a plugin. For example say you wanted to add methods for manipulating dates to
controllers. This can be done by defining a trait in :src/main/groovy

package myplugin

@Enhances()"Controller"
trait DateTrait {
 Date currentDate() {
 Date()return new
 }
}

The annotation defines the types of artefacts that the trait should be applied to.@Enhances

As an alternative to using the annotation above, you can implement a to tell Grails which artefacts you want to inject the trait@Enhances TraitInjector
into at compile time:

package myplugin

@CompileStatic
class ControllerTraitInjector TraitInjector {implements

@Override
 getTrait() {Class
 DateTrait
 }

@Override
 [] getArtefactTypes() {String
 ['Controller'] as []String
 }
}

http://grails.github.io/grails-doc/3.0.x/api/grails/compiler/traits/TraitInjector.html

460

The above will add the to all controllers. The method defines the types of artefacts that the traitTraitInjector DateTrait getArtefactTypes
should be applied to.

18.7 Adding Dynamic Methods at Runtime

The Basics

Grails plugins let you register dynamic methods with any Grails-managed or other class at runtime. This work is done in a doWithDynamicMethods
method.

Note that Grails 3.x features newer features such as traits that are usable from code compiled with . It isCompileStatic
recommended that dynamic behavior is only added for cases that are not possible with traits.

class ExamplePlugin Plugin {extends
 void doWithDynamicMethods() {
 (controllerClass in grailsApplication.controllerClasses) {for
 controllerClass.metaClass.myNewMethod = {-> println }"hello world"
 }
 }
}

In this case we use the implicit application object to get a reference to all of the controller classes' MetaClass instances and add a new method called
 to each controller. If you know beforehand the class you wish the add a method to you can simply reference its property.myNewMethod metaClass

For example we can add a new method to :swapCase java.lang.String

class ExamplePlugin Plugin {extends

@Override
 void doWithDynamicMethods() {
 .metaClass.swapCase = {->String
 def sb = StringBuilder()new
 delegate.each {
 sb << (.isUpperCase(it as) ?Character char
 .toLowerCase(it as) :Character char
 .toUpperCase(it as))Character char
 }
 sb.toString()
 }

assert == .swapCase()"UpAndDown" "uPaNDdOWN"
 }
}

Interacting with the ApplicationContext

461

The closure gets passed the Spring instance. This is useful as it lets you interact with objectsdoWithDynamicMethods ApplicationContext
within it. For example if you were implementing a method to interact with Hibernate you could use the instance in combination withSessionFactory
a :HibernateTemplate

import org.springframework.orm.hibernate3.HibernateTemplate

class ExampleHibernatePlugin Plugin{extends

void doWithDynamicMethods() {

 (domainClass in grailsApplication.domainClasses) {for

domainClass.metaClass. .load = { id->static Long
 def sf = applicationContext.sessionFactory
 def template = HibernateTemplate(sf)new
 template.load(delegate, id)
 }
 }
 }
}

Also because of the autowiring and dependency injection capability of the Spring container you can implement more powerful dynamic constructors that
use the application context to wire dependencies into your object at runtime:

class MyConstructorPlugin {

void doWithDynamicMethods()
 (domainClass in grailsApplication.domainClasses) {for
 domainClass.metaClass.constructor = {->
 applicationContext.getBean(domainClass.name)return
 }
 }
 }
}

Here we actually replace the default constructor with one that looks up prototyped Spring beans instead!

18.8 Participating in Auto Reload Events

Monitoring Resources for Changes

Often it is valuable to monitor resources for changes and perform some action when they occur. This is how Grails implements advanced reloading of
application state at runtime. For example, consider this simplified snippet from the Grails :ServicesPlugin

462

class ServicesGrailsPlugin Plugin {extends
 …
 def watchedResources = "file:./grails-app/services/*Service.groovy"

…
 void onChange(Map< , > event) {String Object
 (event.source) {if
 def serviceClass = grailsApplication.addServiceClass(event.source)
 def serviceName = "${serviceClass.propertyName}"
 beans {
 (serviceClass.getClazz()) { bean ->"$serviceName"
 bean.autowire = true
 }
 }
 }
 }
}

First it defines as either a String or a List of strings that contain either the references or patterns of the resources to watch. If thewatchedResources
watched resources specify a Groovy file, when it is changed it will automatically be reloaded and passed into the closure in the onChange event
object.

The object defines a number of useful properties:event

event.source - The source of the event, either the reloaded or a Spring Class Resource

event.ctx - The Spring instanceApplicationContext

event.plugin - The plugin object that manages the resource (usually)this

event.application - The instanceGrailsApplication

event.manager - The instanceGrailsPluginManager

These objects are available to help you apply the appropriate changes based on what changed. In the "Services" example above, a new service bean is
re-registered with the when one of the service classes changes.ApplicationContext

Influencing Other Plugins

In addition to reacting to changes, sometimes a plugin needs to "influence" another.

Take for example the Services and Controllers plugins. When a service is reloaded, unless you reload the controllers too, problems will occur when you
try to auto-wire the reloaded service into an older controller Class.

To get around this, you can specify which plugins another plugin "influences". This means that when one plugin detects a change, it will reload itself and
then reload its influenced plugins. For example consider this snippet from the :ServicesGrailsPlugin

def influences = ['controllers']

463

Observing other plugins

If there is a particular plugin that you would like to observe for changes but not necessary watch the resources that it monitors you can use the "observe"
property:

def observe = []"controllers"

In this case when a controller is changed you will also receive the event chained from the controllers plugin.

It is also possible for a plugin to observe all loaded plugins by using a wildcard:

def observe = []"*"

The Logging plugin does exactly this so that it can add the property back to artefact that changes while the application is running. log any

18.9 Understanding Plugin Load Order

Controlling Plugin Dependencies

Plugins often depend on the presence of other plugins and can adapt depending on the presence of others. This is implemented with two properties. The
first is called . For example, take a look at this snippet from the Hibernate plugin:dependsOn

class HibernateGrailsPlugin {

def version = "1.0"

def dependsOn = [dataSource: ,"1.0"
 domainClass: ,"1.0"
 i18n: ,"1.0"
 core:]"1.0"
}

The Hibernate plugin is dependent on the presence of four plugins: the , , and plugins.dataSource domainClass i18n core

The dependencies will be loaded before the Hibernate plugin and if all dependencies do not load, then the plugin will not load.

The property also supports a mini expression language for specifying version ranges. A few examples of the syntax can be seen below:dependsOn

464

def dependsOn = [foo:]"* > 1.0"
def dependsOn = [foo:]"1.0 > 1.1"
def dependsOn = [foo:]"1.0 > *"

When the wildcard * character is used it denotes "any" version. The expression syntax also excludes any suffixes such as -BETA, -ALPHA etc. so for
example the expression "1.0 > 1.1" would match any of the following versions:

1.1

1.0

1.0.1

1.0.3-SNAPSHOT

1.1-BETA2

Controlling Load Order

Using establishes a "hard" dependency in that if the dependency is not resolved, the plugin will give up and won't load. It is possible thoughdependsOn
to have a weaker dependency using the and properties:loadAfter loadBefore

def loadAfter = ['controllers']

Here the plugin will be loaded after the plugin if it exists, otherwise it will just be loaded. The plugin can then adapt to the presence ofcontrollers
the other plugin, for example the Hibernate plugin has this code in its closure:doWithSpring

if (manager?.hasGrailsPlugin()) {"controllers"
 openSessionInViewInterceptor(OpenSessionInViewInterceptor) {
 flushMode = HibernateAccessor.FLUSH_MANUAL
 sessionFactory = sessionFactory
 }
 grailsUrlHandlerMapping.interceptors << openSessionInViewInterceptor
}

Here the Hibernate plugin will only register an if the plugin has been loaded. The OpenSessionInViewInterceptor controllers manager
variable is an instance of the interface and it provides methods to interact with other plugins.GrailsPluginManager

You can also use the property to specify one or more plugins that your plugin should load before:loadBefore

http://grails.github.io/grails-doc/3.0.x/api/grails/plugins/GrailsPluginManager.html

465

def loadBefore = ['rabbitmq']

Scopes and Environments

It's not only plugin load order that you can control. You can also specify which environments your plugin should be loaded in and which scopes (stages of
a build). Simply declare one or both of these properties in your plugin descriptor:

def environments = ['development', 'test', 'myCustomEnv']
def scopes = [excludes:'war']

In this example, the plugin will only load in the 'development' and 'test' environments. Nor will it be packaged into the WAR file, because it's excluded
from the 'war' phase. This allows plugins to not be packaged for production use.development-only

The full list of available scopes are defined by the enum , but here's a summary:BuildScope

test - when running tests

functional-test - when running functional tests

run - for run-app and run-war

war - when packaging the application as a WAR file

all - plugin applies to all scopes (default)

Both properties can be one of:

a string - a sole inclusion

a list - a list of environments or scopes to include

a map - for full control, with 'includes' and/or 'excludes' keys that can have string or list values

For example,

def environments = "test"

will only include the plugin in the test environment, whereas

http://grails.github.io/grails-doc/3.0.x/api/grails/util/BuildScope.html

466

def environments = [,]"development" "test"

will include it in both the development test environments. Finally,and

def environments = [includes: [,]]"development" "test"

will do the same thing.

18.10 The Artefact API
You should by now understand that Grails has the concept of artefacts: special types of classes that it knows about and can treat differently from normal
Groovy and Java classes, for example by enhancing them with extra properties and methods. Examples of artefacts include domain classes and controllers.
What you may not be aware of is that Grails allows application and plugin developers access to the underlying infrastructure for artefacts, which means
you can find out what artefacts are available and even enhance them yourself. You can even provide your own custom artefact types.

18.10.1 Asking About Available Artefacts
As a plugin developer, it can be important for you to find out about what domain classes, controllers, or other types of artefact are available in an
application. For example, the needs to know what domain classes exist so it can check them for any properties andSearchable plugin searchable
index the appropriate ones. So how does it do it? The answer lies with the object, and instance of that'sgrailsApplication GrailsApplication
available automatically in controllers and GSPs and can be everywhere else.injected

The object has several important properties and methods for querying artefacts. Probably the most common is the one that givesgrailsApplication
you all the classes of a particular artefact type:

for (cls in grailsApplication.<artefactType>Classes) {
 …
}

In this case, is the property name form of the artefact type. With core Grails you have:artefactType

http://grails.org/plugin/searchable
http://grails.github.io/grails-doc/3.0.x/api/grails/core/GrailsApplication.html

467

domain

controller

tagLib

service

codec

bootstrap

urlMappings

So for example, if you want to iterate over all the domain classes, you use:

for (cls in grailsApplication.domainClasses) {
 …
}

and for URL mappings:

for (cls in grailsApplication.urlMappingsClasses) {
 …
}

You need to be aware that the objects returned by these properties are not instances of . Instead, they are instances of that has someClass GrailsClass
particularly useful properties and methods, including one for the underlying :Class

shortName - the class name of the artefact without the package (equivalent of).Class.simpleName

logicalPropertyName - the artefact name in property form without the 'type' suffix. So becomes 'myGreat'.MyGreatController

isAbstract() - a boolean indicating whether the artefact class is abstract or not.

getPropertyValue(name) - returns the value of the given property, whether it's a static or an instance one. This works best if the property is
initialised on declaration, e.g. .static transactional = true

The artefact API also allows you to fetch classes by name and check whether a class is an artefact:

get<type>Class(String name)

is<type>Class(Class clazz)

The first method will retrieve the instance for the given name, e.g. 'MyGreatController'. The second will check whether a class is aGrailsClass
particular type of artefact. For example, you can use tograilsApplication.isControllerClass(org.example.MyGreatController)
check whether is in fact a controller.MyGreatController

http://docs.oracle.com/javase/6/docs/api/java/lang/Class.html
http://grails.github.io/grails-doc/3.0.x/api/grails/core/GrailsClass.html

468

18.10.2 Adding Your Own Artefact Types
Plugins can easily provide their own artefacts so that they can easily find out what implementations are available and take part in reloading. All you need
to do is create an implementation and register it in your main plugin class:ArtefactHandler

class MyGrailsPlugin {
 def artefacts = [org.somewhere.MyArtefactHandler]
 …
}

The list can contain either handler classes (as above) or instances of handlers.artefacts

So, what does an artefact handler look like? Well, put simply it is an implementation of the interface. To make life a bit easier, there is aArtefactHandler
skeleton implementation that can readily be extended: .ArtefactHandlerAdapter

In addition to the handler itself, every new artefact needs a corresponding wrapper class that implements . Again, skeleton implementations areGrailsClass
available such as , which is particularly useful as it turns your artefact into a Spring bean that is auto-wired, just likeAbstractInjectableGrailsClass
controllers and services.

The best way to understand how both the handler and wrapper classes work is to look at the Quartz plugin:

GrailsJobClass

DefaultGrailsJobClass

JobArtefactHandler

Another example is the which adds a realm artefact. Shiro plugin

http://grails.github.io/grails-doc/3.0.x/api/grails/core/ArtefactHandler.html
http://grails.github.io/grails-doc/3.0.x/api/grails/core/ArtefactHandlerAdapter.html
http://grails.github.io/grails-doc/3.0.x/api/grails/core/GrailsClass.html
http://grails.github.io/grails-doc/3.0.x/api/org/grails/core/AbstractInjectableGrailsClass.html
https://github.com/grails3-plugins/quartz/blob/master/src/main/groovy/grails/plugins/quartz/GrailsJobClass.java
https://github.com/grails3-plugins/quartz/blob/master/src/main/groovy/grails/plugins/quartz/DefaultGrailsJobClass.java
https://github.com/grails3-plugins/quartz/blob/master/src/main/groovy/grails/plugins/quartz/JobArtefactHandler.java
http://github.com/pledbrook/grails-shiro

469

19 Grails and Spring
This section is for advanced users and those who are interested in how Grails integrates with and builds on the . It is also useful for Spring Framework

 considering doing runtime configuration Grails. plugin developers

19.1 The Underpinnings of Grails
Grails is actually a application in disguise. Spring MVC is the Spring framework's built-in MVC web application framework. AlthoughSpring MVC
Spring MVC suffers from some of the same difficulties as frameworks like Struts in terms of its ease of use, it is superbly designed and architected and
was, for Grails, the perfect framework to build another framework on top of.

Grails leverages Spring MVC in the following areas:

Basic controller logic - Grails subclasses Spring's and uses it to delegate to Grails DispatcherServlet controllers

Data Binding and Validation - Grails' and capabilities are built on those provided by Springvalidation data binding

Runtime configuration - Grails' entire runtime convention based system is wired together by a Spring ApplicationContext

Transactions - Grails uses Spring's transaction management in GORM

In other words Grails has Spring embedded running all the way through it.

The Grails ApplicationContext

Spring developers are often keen to understand how the Grails instance is constructed. The basics of it are as follows.ApplicationContext

Grails constructs a parent from the file. This ApplicationContext web-app/WEB-INF/applicationContext.xml
 configures the instance and the .ApplicationContext GrailsApplication GrailsPluginManager

Using this as a parent Grails' analyses the conventions with the instance and constructs a child ApplicationContext GrailsApplication
 that is used as the root of the web applicationApplicationContext ApplicationContext

Configured Spring Beans

Most of Grails' configuration happens at runtime. Each may configure Spring beans that are registered in the . For aplugin ApplicationContext
reference as to which beans are configured, refer to the reference guide which describes each of the Grails plugins and which beans they configure.

19.2 Configuring Additional Beans

Using the Spring Bean DSL

You can easily register new (or override existing) beans by configuring them in which uses thegrails-app/conf/spring/resources.groovy
Grails . Beans are defined inside a property (a Closure):Spring DSL beans

beans = {
 // beans here
}

http://www.springframework.org/
http://www.springframework.org/docs/MVC-step-by-step/Spring-MVC-step-by-step.html
http://docs.spring.io/spring/docs/4.0.x/javadoc-api/org/springframework/web/servlet/DispatcherServlet.html
http://docs.spring.io/spring/docs/4.0.x/javadoc-api/org/springframework/context/ApplicationContext.html
http://grails.github.io/grails-doc/3.0.x/api/grails/core/GrailsApplication.html
http://grails.github.io/grails-doc/3.0.x/api/grails/plugins/GrailsPluginManager.html

470

As a simple example you can configure a bean with the following syntax:

import my.company.MyBeanImpl

beans = {
 myBean(MyBeanImpl) {
 someProperty = 42
 otherProperty = "blue"
 }
}

Once configured, the bean can be auto-wired into Grails artifacts and other classes that support dependency injection (for example
 and integration tests) by declaring a public field whose name is your bean's name (in this case):BootStrap.groovy myBean

class ExampleController {

def myBean
 …
}

Using the DSL has the advantage that you can mix bean declarations and logic, for example based on the :environment

import grails.util.Environment
 my.company.mock.MockImplimport
 my.company.MyBeanImplimport

beans = {
 (Environment.current) {switch
 Environment.PRODUCTION:case
 myBean(MyBeanImpl) {
 someProperty = 42
 otherProperty = "blue"
 }
 break

 Environment.DEVELOPMENT:case
 myBean(MockImpl) {
 someProperty = 42
 otherProperty = "blue"
 }
 break
 }
}

471

The object can be accessed with the variable and can be used to access the Grails configuration (amongst otherGrailsApplication application
things):

import grails.util.Environment
 my.company.mock.MockImplimport
 my.company.MyBeanImplimport

beans = {
 (application.config.my.company.mockService) {if
 myBean(MockImpl) {
 someProperty = 42
 otherProperty = "blue"
 }
 } {else
 myBean(MyBeanImpl) {
 someProperty = 42
 otherProperty = "blue"
 }
 }
}

If you define a bean in with the same name as one previously registered by Grails or an installedresources.groovy
plugin, your bean will replace the previous registration. This is a convenient way to customize behavior without resorting
to editing plugin code or other approaches that would affect maintainability.

Using XML

Beans can also be configured using a . In earlier versions of Grails this file was automaticallygrails-app/conf/spring/resources.xml
generated for you by the script, but the DSL in is the preferred approach now so it isn't automatically generated now.run-app resources.groovy
But it is still supported - you just need to create it yourself.

This file is typical Spring XML file and the Spring documentation has an on how to configure Spring beans.excellent reference

The bean that we configured using the DSL would be configured with this syntax in the XML file:myBean

<bean id= class= >"myBean" "my.company.MyBeanImpl"
 <property name= value= />"someProperty" "42"
 <property name= value= />"otherProperty" "blue"
</bean>

Like the other bean it can be auto-wired into any class that supports dependency injection:

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-basics

472

class ExampleController {

def myBean
}

Referencing Existing Beans

Beans declared in or can reference other beans by convention. For example if you had a resources.groovy resources.xml BookService
class its Spring bean name would be , so your bean would reference it like this in the DSL:bookService

beans = {
 myBean(MyBeanImpl) {
 someProperty = 42
 otherProperty = "blue"
 bookService = ref()"bookService"
 }
}

or like this in XML:

<bean id= class= >"myBean" "my.company.MyBeanImpl"
 <property name= value= />"someProperty" "42"
 <property name= value= />"otherProperty" "blue"
 <property name= ref= />"bookService" "bookService"
</bean>

The bean needs a public setter for the bean reference (and also the two simple properties), which in Groovy would be defined like this:

package my.company

class MyBeanImpl {
 somePropertyInteger
 otherPropertyString
 BookService bookService // or just "def bookService"
}

473

or in Java like this:

package my.company;

class MyBeanImpl {

 BookService bookService;private
 someProperty;private Integer
 otherProperty;private String

 void setBookService(BookService theBookService) {public
 .bookService = theBookService;this
 }

 void setSomeProperty(someProperty) {public Integer
 .someProperty = someProperty;this
 }

 void setOtherProperty(otherProperty) {public String
 .otherProperty = otherProperty;this
 }
}

Using (in XML or the DSL) is very powerful since it configures a runtime reference, so the referenced bean doesn't have to exist yet. As long as it'sref
in place when the final application context configuration occurs, everything will be resolved correctly.

For a full reference of the available beans see the plugin reference in the reference guide.

19.3 Runtime Spring with the Beans DSL
This Bean builder in Grails aims to provide a simplified way of wiring together dependencies that uses Spring at its core.

In addition, Spring's regular way of configuration (via XML and annotations) is static and difficult to modify and configure at runtime, other than
programmatic XML creation which is both error prone and verbose. Grails' changes all that by making it possible to programmatically wireBeanBuilder
together components at runtime, allowing you to adapt the logic based on system properties or environment variables.

This enables the code to adapt to its environment and avoids unnecessary duplication of code (having different Spring configs for test, development and
production environments)

The BeanBuilder class

Grails provides a class that uses dynamic Groovy to construct bean definitions. The basics are as follows:grails.spring.BeanBuilder

http://grails.github.io/grails-doc/3.0.x/api/grails/spring/BeanBuilder.html
http://grails.github.io/grails-doc/3.0.x/api/grails/spring/BeanBuilder.html

474

import org.apache.commons.dbcp.BasicDataSource
 org.grails.orm.hibernate.ConfigurableLocalSessionFactoryBeanimport
 org.springframework.context.ApplicationContextimport
 grails.spring.BeanBuilderimport

def bb = BeanBuilder()new

bb.beans {

dataSource(BasicDataSource) {
 driverClassName = "org.h2.Driver"
 url = "jdbc:h2:mem:grailsDB"
 username = "sa"
 password = ""
 }

sessionFactory(ConfigurableLocalSessionFactoryBean) {
 dataSource = ref('dataSource')
 hibernateProperties = [: ,"hibernate.hbm2ddl.auto" "create-drop"
 :]"hibernate.show_sql" " "true
 }
}

ApplicationContext appContext = bb.createApplicationContext()

Within and the file you don't need to create a new instance of plugins grails-app/conf/spring/resources.groovy
. Instead the DSL is implicitly available inside the and blocks respectively.BeanBuilder doWithSpring beans

This example shows how you would configure Hibernate with a data source with the class.BeanBuilder

Each method call (in this case and calls) maps to the name of the bean in Spring. The first argument to the method isdataSource sessionFactory
the bean's class, whilst the last argument is a block. Within the body of the block you can set properties on the bean using standard Groovy syntax.

Bean references are resolved automatically using the name of the bean. This can be seen in the example above with the way the beansessionFactory
resolves the reference.dataSource

Certain special properties related to bean management can also be set by the builder, as seen in the following code:

sessionFactory(ConfigurableLocalSessionFactoryBean) { bean ->
 // Autowiring behaviour. The other option is 'byType'. [autowire]
 bean.autowire = 'byName'
 // Sets the initialisation method to 'init'. [init-method]
 bean.initMethod = 'init'
 // Sets the destruction method to 'destroy'. [destroy-method]
 bean.destroyMethod = 'destroy'
 // Sets the scope of the bean. [scope]
 bean.scope = 'request'
 dataSource = ref('dataSource')
 hibernateProperties = [: ,"hibernate.hbm2ddl.auto" "create-drop"
 :]"hibernate.show_sql" " "true
}

475

The strings in square brackets are the names of the equivalent bean attributes in Spring's XML definition.

Using BeanBuilder with Spring MVC

Include the file in your classpath to use BeanBuilder in a regular Spring MVC application. Then add thegrails-spring-<version>.jar
following values to your file:<context-param> /WEB-INF/web.xml

<context-param>
 contextConfigLocation<param-name> </param-name>
 /WEB-INF/applicationContext.groovy<param-value> </param-value>
</context-param>

<context-param>
 contextClass<param-name> </param-name>
 <param-value>
 grails.web.servlet.context.GrailsWebApplicationContext
 </param-value>
</context-param>

Then create a file that does the rest:/WEB-INF/applicationContext.groovy

import org.apache.commons.dbcp.BasicDataSource

beans {
 dataSource(BasicDataSource) {
 driverClassName = "org.h2.Driver"
 url = "jdbc:h2:mem:grailsDB"
 username = "sa"
 password = ""
 }
}

Loading Bean Definitions from the File System

You can use the class to load external Groovy scripts that define beans using the same path matching syntax defined here. For example:BeanBuilder

def bb = BeanBuilder()new
bb.loadBeans()"classpath:*SpringBeans.groovy"

def applicationContext = bb.createApplicationContext()

476

Here the loads all Groovy files on the classpath ending with and parses them into bean definitions. AnBeanBuilder SpringBeans.groovy
example script can be seen below:

import org.apache.commons.dbcp.BasicDataSource
 org.grails.orm.hibernate.ConfigurableLocalSessionFactoryBeanimport

beans {

dataSource(BasicDataSource) {
 driverClassName = "org.h2.Driver"
 url = "jdbc:h2:mem:grailsDB"
 username = "sa"
 password = ""
 }

sessionFactory(ConfigurableLocalSessionFactoryBean) {
 dataSource = dataSource
 hibernateProperties = [: ,"hibernate.hbm2ddl.auto" "create-drop"
 :]"hibernate.show_sql" " "true
 }
}

Adding Variables to the Binding (Context)

If you're loading beans from a script you can set the binding to use by creating a Groovy :Binding

def binding = Binding()new
binding.maxSize = 10000
binding.productGroup = 'finance'

def bb = BeanBuilder()new
bb.binding = binding
bb.loadBeans()"classpath:*SpringBeans.groovy"

def ctx = bb.createApplicationContext()

Then you can access the and properties in your DSL files. maxSize productGroup

19.4 The BeanBuilder DSL Explained

Using Constructor Arguments

Constructor arguments can be defined using parameters to each bean-defining method. Put them after the first argument (the Class):

477

bb.beans {
 exampleBean(MyExampleBean, , 2) {"firstArgument"
 someProperty = [1, 2, 3]
 }
}

This configuration corresponds to a with a constructor that looks like this:MyExampleBean

MyExampleBean(foo, bar) {String int
 …
}

Configuring the BeanDefinition (Using factory methods)

The first argument to the closure is a reference to the bean configuration instance, which you can use to configure factory methods and invoke any method
on the class:AbstractBeanDefinition

bb.beans {
 exampleBean(MyExampleBean) { bean ->
 bean.factoryMethod = "getInstance"
 bean.singleton = false
 someProperty = [1, 2, 3]
 }
}

As an alternative you can also use the return value of the bean defining method to configure the bean:

bb.beans {
 def example = exampleBean(MyExampleBean) {
 someProperty = [1, 2, 3]
 }
 example.factoryMethod = "getInstance"
}

http://docs.spring.io/spring/docs/4.0.x/javadoc-api/org/springframework/beans/factory/support/AbstractBeanDefinition.html

478

Using Factory beans

Spring defines the concept of factory beans and often a bean is created not directly from a new instance of a Class, but from one of these factories. In this
case the bean has no Class argument and instead you must pass the name of the factory bean to the bean defining method:

bb.beans {

myFactory(ExampleFactoryBean) {
 someProperty = [1, 2, 3]
 }

myBean(myFactory) {
 name = "blah"
 }
}

Another common approach is provide the name of the factory method to call on the factory bean. This can be done using Groovy's named parameter
syntax:

bb.beans {

myFactory(ExampleFactoryBean) {
 someProperty = [1, 2, 3]
 }

myBean(myFactory:) {"getInstance"
 name = "blah"
 }
}

Here the method on the bean will be called to create the bean.getInstance ExampleFactoryBean myBean

Creating Bean References at Runtime

Sometimes you don't know the name of the bean to be created until runtime. In this case you can use a string interpolation to invoke a bean defining
method dynamically:

def beanName = "example"
bb.beans {
 (MyExampleBean) {"${beanName}Bean"
 someProperty = [1, 2, 3]
 }
}

479

In this case the variable defined earlier is used when invoking a bean defining method. The example has a hard-coded value but would workbeanName
just as well with a name that is generated programmatically based on configuration, system properties, etc.

Furthermore, because sometimes bean names are not known until runtime you may need to reference them by name when wiring together other beans, in
this case using the method:ref

def beanName = "example"
bb.beans {

(MyExampleBean) {"${beanName}Bean"
 someProperty = [1, 2, 3]
 }

anotherBean(AnotherBean) {
 example = ref()"${beanName}Bean"
 }
}

Here the example property of is set using a runtime reference to the . The method can also be used to refer to beansAnotherBean exampleBean ref
from a parent that is provided in the constructor of the :ApplicationContext BeanBuilder

ApplicationContext parent = ...//
def bb = BeanBuilder(parent)new
bb.beans {
 anotherBean(AnotherBean) {
 example = ref(,)"${beanName}Bean" true
 }
}

Here the second parameter specifies that the reference will look for the bean in the parent context.true

Using Anonymous (Inner) Beans

You can use anonymous inner beans by setting a property of the bean to a block that takes an argument that is the bean type:

480

bb.beans {

marge(Person) {
 name = "Marge"
 husband = { Person p ->
 name = "Homer"
 age = 45
 props = [overweight: , height:]true "1.8m"
 }
 children = [ref('bart'), ref('lisa')]
 }

bart(Person) {
 name = "Bart"
 age = 11
 }

lisa(Person) {
 name = "Lisa"
 age = 9
 }
}

In the above example we set the bean's husband property to a block that creates an inner bean reference. Alternatively if you have a factory beanmarge
you can omit the type and just use the specified bean definition instead to setup the factory:

bb.beans {

personFactory(PersonFactory)

marge(Person) {
 name = "Marge"
 husband = { bean ->
 bean.factoryBean = "personFactory"
 bean.factoryMethod = "newInstance"
 name = "Homer"
 age = 45
 props = [overweight: , height:]true "1.8m"
 }
 children = [ref('bart'), ref('lisa')]
 }
}

Abstract Beans and Parent Bean Definitions

To create an abstract bean definition define a bean without a parameter:Class

481

class HolyGrailQuest {
 def start() { println }"lets begin"
}

class KnightOfTheRoundTable {

 nameString
 leaderString
 HolyGrailQuest quest

KnightOfTheRoundTable(name) {String
 .name = namethis
 }

def embarkOnQuest() {
 quest.start()
 }
}

import grails.spring.BeanBuilder

def bb = BeanBuilder()new
bb.beans {
 abstractBean {
 leader = "Lancelot"
 }
 …
}

Here we define an abstract bean that has a property with the value of . To use the abstract bean set it as the parent of the childleader "Lancelot"
bean:

482

bb.beans {
 …
 quest(HolyGrailQuest)

knights(KnightOfTheRoundTable,) { bean ->"Camelot"
 bean.parent = abstractBean
 quest = ref('quest')
 }
}

When using a parent bean you must set the parent property of the bean before setting any other properties on the bean!

If you want an abstract bean that has a specified you can do it this way:Class

import grails.spring.BeanBuilder

def bb = BeanBuilder()new
bb.beans {

abstractBean(KnightOfTheRoundTable) { bean ->
 bean.' ' = abstract true
 leader = "Lancelot"
 }

quest(HolyGrailQuest)

knights() { bean ->"Camelot"
 bean.parent = abstractBean
 quest = quest
 }
}

In this example we create an abstract bean of type and use the bean argument to set it to abstract. Later we define aKnightOfTheRoundTable
knights bean that has no defined, but inherits the from the parent bean.Class Class

Using Spring Namespaces

Since Spring 2.0, users of Spring have had easier access to key features via XML namespaces. You can use a Spring namespace in BeanBuilder by
declaring it with this syntax:

xmlns context:"http://www.springframework.org/schema/context"

483

and then invoking a method that matches the names of the Spring namespace tag and its associated attributes:

context.'component-scan'('base- ':)package "my.company.domain"

You can do some useful things with Spring namespaces, such as looking up a JNDI resource:

xmlns jee:"http://www.springframework.org/schema/jee"

jee.'jndi-lookup'(id: , 'jndi-name':)"dataSource" "java:comp/env/myDataSource"

This example will create a Spring bean with the identifier by performing a JNDI lookup on the given JNDI name. With Spring namespacesdataSource
you also get full access to all of the powerful AOP support in Spring from BeanBuilder. For example given these two classes:

class Person {

 ageint
 nameString

void birthday() {
 ++age;
 }
}

class BirthdayCardSender {

List peopleSentCards = []

void onBirthday(Person person) {
 peopleSentCards << person
 }
}

You can define an aspect that uses a pointcut to detect whenever the method is called:birthday()

484

xmlns aop:"http://www.springframework.org/schema/aop"

fred(Person) {
 name = "Fred"
 age = 45
}

birthdayCardSenderAspect(BirthdayCardSender)

aop {
 config(:) {"proxy-target-class" true
 aspect(id: , ref:) {"sendBirthdayCard" "birthdayCardSenderAspect"
 after method: ,"onBirthday"
 pointcut: "execution(void ..Person.birthday()) and (person)"this
 }
 }
}

19.5 Property Placeholder Configuration
Grails supports the notion of property placeholder configuration through an extended version of Spring's .PropertyPlaceholderConfigurer

Settings defined in either scripts or Java properties files can be used as placeholder values for Spring configuration in ConfigSlurper
 and . For example given the followinggrails-app/conf/spring/resources.xml grails-app/conf/spring/resources.groovy

entries in (or an externalized config):grails-app/conf/application.groovy

database.driver="com.mysql.jdbc.Driver"
database.dbname="mysql:mydb"

You can then specify placeholders in as follows using the familiar ${..} syntax:resources.xml

<bean id="dataSource"
 class= >"org.springframework.jdbc.datasource.DriverManagerDataSource"
 <property name= >"driverClassName"
 ${database.driver}<value> </value>
 </property>
 <property name= >"url"
 jdbc:${database.dbname}<value> </value>
 </property>
 </bean>

To specify placeholders in you need to use single quotes:resources.groovy

http://docs.spring.io/spring/docs/4.0.x/javadoc-api/org/springframework/beans/factory/config/PropertyPlaceholderConfigurer.html
http://groovy.codehaus.org/ConfigSlurper

485

dataSource(org.springframework.jdbc.datasource.DriverManagerDataSource) {
 driverClassName = '${database.driver}'
 url = 'jdbc:${database.dbname}'
}

This sets the property value to a literal string which is later resolved against the config by Spring's PropertyPlaceholderConfigurer.

A better option for is to access properties through the variable:resources.groovy grailsApplication

dataSource(org.springframework.jdbc.datasource.DriverManagerDataSource) {
 driverClassName = grailsApplication.config.database.driver
 url = "jdbc:${grailsApplication.config.database.dbname}"
}

Using this approach will keep the types as defined in your config.

19.6 Property Override Configuration
Grails supports setting of bean properties via .configuration

You define a block with the names of beans and their values:beans

beans {
 bookService {
 webServiceURL = "http://www.amazon.com"
 }
}

The general format is:

[bean name].[property name] = [value]

The same configuration in a Java properties file would be:

486

beans.bookService.webServiceURL=http://www.amazon.com

487

20 Grails and Hibernate
If (Grails Object Relational Mapping) is not flexible enough for your liking you can alternatively map your domain classes using Hibernate, eitherGORM
with XML mapping files or JPA annotations. You will be able to map Grails domain classes onto a wider range of legacy systems and have more
flexibility in the creation of your database schema. Best of all, you will still be able to call all of the dynamic persistent and query methods provided by
GORM!

20.1 Using Hibernate XML Mapping Files
Mapping your domain classes with XML is pretty straightforward. Simply create a file in your project's hibernate.cfg.xml grails-app/conf
directory, either manually or with the command, that contains the following:create-hibernate-cfg-xml

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE hibernate-configuration PUBLIC
 "-//Hibernate/Hibernate Configuration DTD 3.0//EN"
 >"http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd"
<hibernate-configuration>
 <session-factory>
 <!-- Example mapping file inclusion -->
 <mapping resource= />"org.example.Book.hbm.xml"
 …
 </session-factory>
</hibernate-configuration>

The individual mapping files, like 'org.example.Book.hbm.xml' in the above example, also go into the directory. To find out how tograils-app/conf
map domain classes with XML, check out the .Hibernate manual

If the default location of the file doesn't suit you, you can change it by specifying an alternative location in hibernate.cfg.xml
:grails-app/conf/application.groovy

hibernate {
 config.location = "file:/path/to/my/hibernate.cfg.xml"
}

or even a list of locations:

hibernate {
 config.location = [,"file:/path/to/one/hibernate.cfg.xml"
]"file:/path/to/two/hibernate.cfg.xml"
}

http://docs.jboss.org/hibernate/core/3.6/reference/en-US/html/mapping.html

488

Grails also lets you write your domain model in Java or reuse an existing one that already has Hibernate mapping files. Simply place the mapping files
into and either put the Java files in or the classes in the project's directory if the domain model is packaged as agrails-app/conf src/java lib
JAR. You still need the though! hibernate.cfg.xml

20.2 Mapping with Hibernate Annotations
To map a domain class with annotations, create a new class in and use the annotations defined as part of the EJB 3.0 spec (for more info onsrc/java
this see the):Hibernate Annotations Docs

package com.books;

 javax.persistence.Entity;import
 javax.persistence.GeneratedValue;import
 javax.persistence.Id;import

@Entity
 class Book {public

 id;private Long
 title;private String
 description;private String
 Date date;private

@Id
 @GeneratedValue
 getId() {public Long
 id;return
 }

 void setId(id) {public Long
 .id = id;this
 }

 getTitle() {public String
 title;return
 }

 void setTitle(title) {public String
 .title = title;this
 }

 getDescription() {public String
 description;return
 }

 void setDescription(description) {public String
 .description = description;this
 }
}

Then register the class with the Hibernate by adding relevant entries to the file assessionFactory grails-app/conf/hibernate.cfg.xml
follows:

http://annotations.hibernate.org/

489

<!DOCTYPE hibernate-configuration SYSTEM
 >"http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd"
<hibernate-configuration>
 <session-factory>
 <mapping package= />"com.books"
 <mapping class= />"com.books.Book"
 </session-factory>
</hibernate-configuration>

See the previous section for more information on the file.hibernate.cfg.xml

When Grails loads it will register the necessary dynamic methods with the class. To see what else you can do with a Hibernate domain class see the
section on . Scaffolding

20.3 Adding Constraints
You can still use GORM validation even if you use a Java domain model. Grails lets you define constraints through separate scripts in the src/java
directory. The script must be in a directory that matches the package of the corresponding domain class and its name must have a suffix. ForConstraints
example, if you had a domain class , then you would create the script org.example.Book

.src/java/org/example/BookConstraints.groovy

Add a standard GORM block to the script:constraints

constraints = {
 title blank: false
 author blank: false
}

Once this is in place you can validate instances of your domain class!

490

21 Scaffolding
Scaffolding lets you generate some basic CRUD interfaces for a domain class, including:

The necessary views

Controller actions for create/read/update/delete (CRUD) operations

The way for an application to express a dependency on the scaffolding plugin is by including the following in .build.gradle

dependencies {

// ...

compile "org.grails.plugins:scaffolding"

// ...

}

Dynamic Scaffolding

The simplest way to get started with scaffolding is to enable it by setting the property in the controller to a specific domain class:scaffold

class BookController {
 scaffold = Book // Or any other domain class such as , static "Author" "Publisher"
}

With this configured, when you start your application the actions and views will be autogenerated at runtime. The following actions are dynamically
implemented by default by the runtime scaffolding mechanism:

index

show

edit

delete

create

save

update

A CRUD interface will also be generated. To access this open in a browser.http://localhost:8080/book

491

Note: The old alternative of defining property:scaffold

class BookController {
 scaffold = static true
}

is no longer supported above Grails 3.0.

If you prefer to keep your domain model in Java and you can still use scaffolding, simply import the domain class and set its namemapped with Hibernate
as the argument.scaffold

You can add new actions to a scaffolded controller, for example:

class BookController {

 scaffold = Bookstatic

def changeAuthor() {
 def b = Book.get(params.id)
 b.author = Author.get(params[])"author.id"
 b.save()

// redirect to a scaffolded action
 redirect(action:show)
 }
}

You can also override the scaffolded actions:

class BookController {

 scaffold = Bookstatic

// overrides scaffolded action to both authors and booksreturn
 def index() {
 [bookInstanceList: Book.list(),
 bookInstanceTotal: Book.count(),
 authorInstanceList: Author.list()]
 }

def show() {
 def book = Book.get(params.id)
 log.error(book)
 [bookInstance : book]
 }
}

492

All of this is what is known as "dynamic scaffolding" where the CRUD interface is generated dynamically at runtime.

By default, the size of text areas in scaffolded views is defined in the CSS, so adding 'rows' and 'cols' attributes will have
no effect.

Also, the standard scaffold views expect model variables of the form for collections<propertyName>InstanceList
and for single instances. It's tempting to use properties like 'books' and 'book', but those<propertyName>Instance
won't work.

Static Scaffolding

Grails lets you generate a controller and the views used to create the above interface from the command line. To generate a controller type:

grails generate-controller Book

or to generate the views:

grails generate-views Book

or to generate everything:

grails generate-all Book

If you have a domain class in a package or are generating from a remember to include the fully qualified package name:Hibernate mapped class

grails generate-all com.bookstore.Book

Customizing the Generated Views

493

The views adapt to . For example you can change the order that fields appear in the views simply by re-ordering the constraints inValidation constraints
the builder:

def constraints = {
 title()
 releaseDate()
}

You can also get the generator to generate lists instead of text inputs if you use the constraint:inList

def constraints = {
 title()
 category(inList: [, ,])"Fiction" "Non-fiction" "Biography"
 releaseDate()
}

Or if you use the constraint on a number:range

def constraints = {
 age(range:18..65)
}

Restricting the size with a constraint also effects how many characters can be entered in the d view:

def constraints = {
 name(size:0..30)
}

Customizing the Scaffolding templates

The templates used by Grails to generate the controller and views can be customized by installing the templates with the command. install-templates

494

22 Deployment
Grails applications can be deployed in a number of ways, each of which has its pros and cons.

22.1 Standalone

"grails run-app"

You should be very familiar with this approach by now, since it is the most common method of running an application during the development phase. An
embedded Tomcat server is launched that loads the web application from the development sources, thus allowing it to pick up any changes to application
files.

You can also deploy to production this way using:

grails prod run-app

Runnable WAR or JAR file

Another way to deploy in Grails 3.0 or above is to use the new support for runnable JAR or WAR files. To create runnable archives, run grails
:package

grails package

You can then run either the WAR file or the JAR using your Java installation:

java -Dgrails.env=prod -jar build/libs/mywar-0.1.war (or .jar)

A TAR/ZIP distribution

The will also produce a TAR and a ZIP file in the directory. If you extract these archives (typically the TAR onpackage build/distributions
Unix systems and the ZIP on Windows) you can then run bash file which is the name of your application located in the directory.bin

For example:

495

$ grails create-app helloworld
$ cd helloworld
$ grails package
$ tar -xvf build/distributions/helloworld-0.1.tar
$ export HELLOWORLD_OPTS=-Dgrails.env=prod
$ helloworld-0.1/bin/helloworld
Grails application running at http://localhost:8080

Note: TAR/ZIP distribution assembly has been removed from Grails 3.1.

22.2 Container Deployment (e.g. Tomcat)
Grails apps can be deployed to a Servlet Container or Application Server.

WAR file

A common approach to Grails application deployment in production is to deploy to an existing Servlet container via a WAR file. Containers allow
multiple applications to be deployed on the same port with different paths.

Creating a WAR file is as simple as executing the command:war

grails war

This will produce a WAR file that can be deployed to a container, in the directory.build/libs

Note that by default Grails will include an embeddable version of Tomcat inside the WAR file so that it is runnable (see the previous section), this can
cause problems if you deploy to a different version of Tomcat. If you don't intend to use the embedded container then you should change the scope of the
Tomcat dependencies to prior to deploying to your production container in :provided build.gradle

provided "org.springframework.boot:spring-boot-starter-tomcat"

Application servers

496

Ideally you should be able to simply drop a WAR file created by Grails into any application server and it should work straight away. However, things are
rarely ever this simple. The contains a list of application servers that Grails has been tested with, along with any additional steps required toGrails website
get a Grails WAR file working.

22.3 Deployment Configuration Tasks

Setting up HTTPS and SSL certificates for standalone deployment

To configure an SSL certificate and to listen on an HTTPS port instead of HTTP, add properties like these to :application.yml

server:
 port: 8443 # The port to listen on
 ssl:
 enabled: # Activate HTTPS mode on the server porttrue
 key-store: <the-location-of-your-keystore> # e.g. /etc/tomcat7/keystore/tomcat.keystore
 key-store-password: <your-key-store-password> # e.g. changeit
 key-alias: <your-key-alias> # e.g. tomcat
 key-password: <usually-the-same-as-your-key-store-password>

These settings control the embedded Tomcat container for a production deployment. Alternatively, the properties can be specified on the command-line.
Example: .-Dserver.ssl.enabled=true -Dserver.ssl.key-store=/path/to/keystore

Configuration of both an HTTP and HTTPS connector via application properties is not supported. If you want to have both,
then you'll need to configure one of them programmatically. (More information on how to do this can be found in the
how-to guide below.)

There are other relevant settings. Further reference:

Spring Boot: How to configure SSL on embedded servlet containers

Spring Boot: Common Application Properties

http://grails.org/Deployment
https://docs.spring.io/spring-boot/docs/current/reference/html/howto-embedded-servlet-containers.html#howto-configure-ssl
https://docs.spring.io/spring-boot/docs/current/reference/html/common-application-properties.html

497

23 Contributing to Grails
Grails is an open source project with an active community and we rely heavily on that community to help make Grails better. As such, there are various
ways in which people can contribute to Grails. One of these is by and making them publicly available. In this chapter, we'll look atwriting useful plugins
some of the other options.

23.1 Report Issues in Github's issue tracker
Grails uses Github to track issues in the . Similarly for its documentation there is a . If you've found a bug or wish to see acore framework separate tracker
particular feature added, these are the places to start. You'll need to create a (free) github account in order to either submit an issue or comment on an
existing one in either of these.

When submitting issues, please provide as much information as possible and in the case of bugs, make sure you explain which versions of Groovy, Grails
and various plugins you are using. Other environment details - OS version, JDK, Gradle etc. should also be included. Also, an issue is much more likely to
be dealt with if you upload a reproducible sample application on a github repository and provide a link in the issue.

Reviewing issues

There are quite a few old issues in github, some of which may no longer be valid. The core team can't track down these alone, so a very simple
contribution that you can make is to verify one or two issues occasionally.

Which issues need verification? Going to the will display all issues that haven't been resolved.issue tracker

Once you've verified an issue, simply add a short comment explaining what you found. Be sure to metion your environment details and grails version.

23.2 Build From Source and Run Tests
If you're interested in contributing fixes and features to any part of grails, you will have to learn how to get hold of the project's source, build it and test it
with your own applications. Before you start, make sure you have:

A JDK (7 or above)

A git client

Once you have all the pre-requisite packages installed, the next step is to download the Grails source code, which is hosted at in severalGitHub
repositories owned by the . This is a simple case of cloning the repository you're interested in. For example, to get the core framework"grails" GitHub user
run:

git clone http://github.com/grails/grails-core.git

This will create a "grails-core" directory in your current working directory containing all the project source files. The next step is to get a Grails
installation from the source.

Creating a Grails installation

If you look at the project structure, you'll see that it doesn't look much like a standard installation. But, it's very simple to turn it into one.GRAILS_HOME
Just run this from the root directory of the project:

https://github.com/grails/grails-core/issues
https://github.com/grails/grails-doc/issues
https://github.com/grails/grails-core/issues?q=is%3Aopen+is%3Aissue
http://github.com
http://github.com/grails

498

./gradlew install

This will fetch all the standard dependencies required by Grails and then build a installation. Note that this target skips the extensiveGRAILS_HOME
collection of Grails test classes, which can take some time to complete.

Once the above command has finished, simply set the environment variable to the checkout directory and add the "bin" directory to yourGRAILS_HOME
path. When you next type command to run, you'll be using the version you just built.grails

If you are using then that can also be used to work with this local installation via the following:SDKMAN

sdk install grails dev /path/to/grails-core

Now you will have a dev version in your local which you can use to test your features.

Running the test suite

All you have to do to run the full suite of tests is:

./gradlew test

These will take a while (15-30 mins), so consider running individual tests using the command line. For example, to run the test spec
 simply execute the following command:BinaryPluginSpec

./gradlew :grails-core:test --tests *.BinaryPluginSpec

Note that you need to specify the sub-project that the test case resides in, because the top-level "test" target won't work....

Developing in IntelliJ IDEA

You need to run the following gradle task:

http://sdkman.io

499

./gradlew idea

Then open the project file which is generated in IDEA. Simple!

Developing in STS / Eclipse

You need to run the following gradle task:

./gradlew cleanEclipse eclipse

Before importing projects to STS do the following action:

Edit grails-scripts/.classpath and remove the line "<classpathentry kind="src" path="../scripts"/>".

Use "Import->General->Existing Projects into Workspace" to import all projects to STS. There will be a few build errors. To fix them do the following:

Add the springloaded-core JAR file in $GRAILS_HOME/lib/org.springsource.springloaded/springloaded-core/jars to grails-core's classpath.

Remove "src/test/groovy" from grails-plugin-testing's source path GRECLIPSE-1067

Add the jsp-api JAR file in $GRAILS_HOME/lib/javax.servlet.jsp/jsp-api/jars to the classpath of grails-web

Fix the source path of grails-scripts. Add linked source folder linking to "../scripts". If you get build errors in grails-scripts, do "../gradlew
cleanEclipse eclipse" in that directory and edit the .classpath file again (remove the line "<classpathentry kind="src" path="../scripts"/>"). Remove
possible empty "scripts" directory under grails-scripts if you are not able to add the linked folder.

Do a clean build for the whole workspace.

To use Eclipse GIT scm team provider: Select all projects (except "Servers") in the navigation and right click -> Team -> Share project (not "Share
projects"). Choose "Git". Then check "Use or create repository in parent folder of project" and click "Finish".

Get the recommended code style settings from the (final style not decided yet, currently). Import the code style xmlmailing list thread profile.xml
file to STS in Window->Preferences->Java->Code Style->Formatter->Import . Grails code uses spaces instead of tabs for indenting.

Debugging Grails or a Grails application

To enable debugging, run:

grails run-app --debug-jvm

http://grails.1312388.n4.nabble.com/Grails-development-code-style-IDE-formatting-settings-tp3854216p3854216.html
http://grails.1312388.n4.nabble.com/attachment/3854262/0/profile.xml

500

By default Grails forks a JVM to run the application in. The argument causes the debugger to be associated with the forked JVM. In order-debug-jvm
to instead attach the debugger to the build system which is going to fork the JVM use the option:-debug

grails -debug run-app

23.3 Submit Patches to Grails Core
If you want to submit patches to the project, you simply need to fork the repository on GitHub rather than clone it directly. Then you will commit your
changes to your fork and send a pull request for a core team member to review.

Forking and Pull Requests
One of the benefits of is the way that you can easily contribute to a project by and with your changes.GitHub forking the repository sending pull requests

What follows are some guidelines to help ensure that your pull requests are speedily dealt with and provide the information we need. They will also make
your life easier!

Make sure your fork is up to date

Making changes to outdated sources is not a good idea. Someone else may have already made the change.

git pull upstream master

Create a local branch for your changes

Your life will be greatly simplified if you create a local branch to make your changes on. For example, as soon as you fork a repository and clone the fork
locally, execute

git checkout -b issue_123

This will create a new local branch called "issue_123" based off the "master" branch. Of course, you can name the branch whatever you like, but a good
idea would be to reference the GitHub issue number that the change is relevant to. Each Pull Request should have its own branch.

Create Github issues for non-trivial changes

http://github.com
http://help.github.com/fork-a-repo/
http://help.github.com/send-pull-requests/

501

For any non-trivial changes, raise an issue on github if one doesn't already exist. That helps us keep track of what changes go into each new version of
Grails.

Include github issue ID in commit messages

This may not seem particularly important, but having a github issue ID in a commit message means that we can find out at a later date why a change was
made. Include the ID in any and all commits that relate to that issue. If a commit isn't related to an issue, then there's no need to include an issue ID.

Make sure your fork is up to date again and rebase

Since the core developers must merge your commits into the main repository, it makes life much easier if your fork on GitHub is up to date before you
send a pull request.

Let's say you have the main repository set up as a remote called "upstream" and you want to submit a pull request. Also, all your changes are currently on
the local "issue_123" branch but not on "master". The first step involves pulling any changes from the main repository that have been added since you last
fetched and merged:

git checkout master
git pull upstream master

This should complete without any problems or conflicts. Next, rebase your local branch against the now up-to-date master:

git checkout issue_123
git rebase master

What this does is rearrange the commits such that all of your changes come after the most recent one in master. Think adding some cards to the top of a
deck rather than shuffling them into the pack.

Push your branch to GitHub and send Pull Request

Finally, you must push your changes to your fork on GitHub, otherwise the core developers won't be able to pick them up:

git push origin issue_123

You should not merge your branch to your forks master. If the Pull Request is not accepted, your master will then be out of
sync with upstream forever.

502

You're now ready to send the pull request from the GitHub user interface.

Say what your pull request is for

A pull request can contain any number of commits and it may be related to any number of issues. In the pull request message, please specify the IDs of all
issues that the request relates to. Also give a brief description of the work you have done, such as: "I refactored the data binder and added support for
custom number editors. Fixes #xxxx".

23.4 Submit Patches to Grails Documentation

Building the Guide

To build the documentation, simply type:

./gradlew docs

Be warned: this command can take a while to complete and you should probably increase your Gradle memory settings by giving the GRADLE_OPTS
environment variable a value like

export GRADLE_OPTS="-Xmx512m -XX:MaxPermSize=384m"

Fortunately, you can reduce the overall build time with a couple of useful options. The first allows you to specify the location of the Grails source to use:

./gradlew -Dgrails.home=/home/user/projects/grails-core docs

The Grails source is required because the guide links to its API documentation and the build needs to ensure it's generated. If you don't specify a
 property, then the build will fetch the Grails source - a download of 10s of megabytes. It must then compile the Grails source which cangrails.home

take a while too.

Additionally you can create a ~/.gradle/gradle.properties file with this variable set:

503

grails.home=/home/user/projects/grails-core

or

grails.home=../grails-core

The other useful option allows you to disable the generation of the API documentation, since you only need to do it once:

./gradlew -Ddisable.groovydocs= docstrue

Again, this can save a significant amount of time and memory.

The main English user guide is generated in the directory, with the sub-directory containing the user guide part and the folderbuild/docs guide ref
containing the reference material. To view the user guide, simply open .build/docs/index.html

Publishing

The publishing system for the user guide is the same as . You write your chapters and sections in the gdoc wiki format which isthe one for Grails projects
then converted to HTML for the final guide. Each chapter is a top-level gdoc file in the directory. Sections and sub-sections thensrc/<lang>/guide
go into directories with the same name as the chapter gdoc but without the suffix.

The structure of the user guide is defined in the file, which is a YAML file. This file also defines thesrc/<lang>/guide/toc.yml
(language-specific) section titles. If you add or remove a gdoc file, you must update the TOC as well!

The directory contains the source for the reference sidebar. Each directory is the name of a category, which also appears in the docs.src/<lang>/ref
Hence the directories need different names for the different languages. Inside the directories go the gdoc files, whose names match the names of the
methods, commands, properties or whatever that the files describe.

Translations

This project can host multiple translations of the user guide, with being the main one. To add another one, simply create a new languagesrc/en
directory under and copy into it all the files under . The build will take care of the rest.src src/en

Once you have a copy of the original guide, you can use the macro to wrap the English text that you have replaced, rather than remove it.{hidden}
This makes it easier to compare changes to the English guide against your translation. For example:

http://grails.org/doc/2.0.0.M1/guide/conf.html#docengine

504

{hidden}
When you create a Grails application with the [create-app|commandLine] command,
Grails doesn't automatically create an Ant file but you can generatebuild.xml
one with the [integrate-with|commandLine] command:
{hidden}

Quando crias uma aplicao Grails com o comando [create-app|commandLine], Grails
no cria automaticamente um ficheiro de construo Ant mas podes gerarbuild.xml
um com o comando [integrate-with|commandLine]:

Because the English text remains in your gdoc files, will show differences on the English lines. You can then use the output of to see whichdiff diff
bits of your translation need updating. On top of that, the macro ensures that the text inside it is not displayed in the browser, although you{hidden}
can display it by adding this URL as a bookmark: (requires you to build the user guide with Grails 2.0 M2 orjavascript:toggleHidden();
later).

Even better, you can use the script in the root of the project to see what still needs translating. You run it like so:left_to_do.groovy

./left_to_do.groovy es

This will then print out a recursive diff of the given translation against the reference English user guide. Anything in blocks that hasn't{hidden}
changed since being translated will appear in the diff output. In other words, all you will see is content that hasn't been translated yet and content thatnot
has changed since it was translated. Note that blocks are ignored, so you need to include them inside macros.{code} don't {hidden}

To provide translations for the headers, such as the user guide title and subtitle, just add language specific entries in the 'resources/doc.properties' file like
so:

es.title=El Grails Framework
es.subtitle=...

For each language translation, properties beginning . will override the standard ones. In the above example, the user guide title will be El Grails<lang>
Framework for the Spanish translation. Also, translators can be credited by adding a '<lang>.translators' property:

fr.translators=Stphane Maldini

505

This should be a comma-separated list of names (or the native language equivalent) and it will be displayed as a "Translated by" header in the user guide
itself.

You can build specific translations very easily using the and tasks. For example, to build both the French HTMLpublishGuide_* publishPdf_*
and PDF user guides, simply execute

./gradlew publishPdf_fr

Each translation is generated in its own directory, so for example the French guide will end up in . You can then view the translatedbuild/docs/fr
guide by opening .build/docs/<lang>/index.html

All translations are created as part of the project, so you can easily see what the current state is without having to buildHudson CI build for the grails-doc
the docs yourself.

Copies of this document may be made for your own use and for distribution to others, provided that you
do not charge any fee for such copies and further provided that each copy contains this Copyright
Notice, whether distributed in print or electronically.

http://hudson.grails.org/job/grails_docs_2.0.x/lastSuccessfulBuild/artifact/build/docs/

